scholarly journals A Hybrid Control Algorithm for Gradient-Free Optimization using Conjugate Directions

2020 ◽  
Vol 53 (2) ◽  
pp. 5825-5830
Author(s):  
Alessandro Melis ◽  
Ricardo G. Sanfelice ◽  
Lorenzo Marconi
Author(s):  
Kai Lang ◽  
Pinqi Xia ◽  
Edward C. Smith ◽  
Lina Shang

Variable rotor speed technology implemented in a helicopter can improve the flight performance, reduce the required power, and increase the flight speed. However, variable rotor speed changes the frequencies of rotor vibratory loads and may produce helicopter fuselage resonance under the excitation of the rotor vibratory loads. Active vibration control (AVC) has been effectively used in vibration reduction of helicopter fuselages. However, the frequency domain control algorithms that are currently used have poor adaptability in controlling vibration with variable frequencies (i.e., during time varying rotor speeds). In order to effectively improve control convergence, adaptability, and effectiveness, the normalized adaptive hybrid control algorithms containing both the normalized adaptive harmonic control algorithm and the normalized frequency tracking algorithm have been presented in this paper. Simulations of AVC with variable frequencies on a dynamically similar frame structure of a helicopter fuselage driven by piezoelectric stack actuators installed on the gearbox support struts show that the normalized adaptive hybrid control algorithms can accurately track the changes in rotor load frequencies and can be effectively used in the AVC of a helicopter with variable rotor speed.


2019 ◽  
Vol 27 (6) ◽  
pp. 2581-2588 ◽  
Author(s):  
Carolina Albea Sanchez ◽  
Oswaldo Lopez Santos ◽  
David. A. Zambrano Prada ◽  
Francisco Gordillo ◽  
Germain Garcia

Sensors ◽  
2016 ◽  
Vol 16 (5) ◽  
pp. 652 ◽  
Author(s):  
Zain Ali ◽  
Daobo Wang ◽  
Muhammad Aamir

Author(s):  
Xiangyu Liu ◽  
Ping Zhang ◽  
Guanglong Du

Purpose – The purpose of this paper is to provide a hybrid adaptive impedance-leader-follower control algorithm for multi-arm coordination manipulators, which is significant for dealing with the problems of kinematics inconsistency and error accumulation of interactive force in multi-arm system. Design/methodology/approach – This paper utilized a motion mapping theory in Cartesian space to establish a centralized dynamic leader-follower control algorithm which helped to reduce the possibility of kinematics inconsistency for multiple manipulators. A virtual linear spring model (VLSM) was presented based on a recognition approach of characteristic marker. This paper accomplished an adaptive impedance control algorithm based on the VLSM, which took into account the non-rigid contact characteristic. Experimentally demonstrated results showed the proposed algorithm guarantees that the motion and interactive forces asymptotically converge to the prescribed values. Findings – The hybrid control method improves the accuracy and reliability of multi-arm coordination system, which presents a new control framework for multiple manipulators. Practical implications – This algorithm has significant commercial applications, as a means of controlling multi-arm coordination manipulators that could serve to handle large objects and assemble complicated objects in industrial and hazardous environment. Originality/value – This work presented a new control framework for multiple coordination manipulators, which can ensure consistent kinematics and reduce the influence of error accumulation, and thus can improve the accuracy and reliability of multi-arm coordination system.


PLoS ONE ◽  
2018 ◽  
Vol 13 (12) ◽  
pp. e0210052 ◽  
Author(s):  
Navid Shahriari ◽  
Janniko R. Georgiadis ◽  
Matthijs Oudkerk ◽  
Sarthak Misra

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Bohang Wang ◽  
Daobo Wang

In this article, a new and novel robust hybrid control algorithm is designed for tuning the parameters of unmanned aerial vehicle (UAV). The quadrotor type UAV mathematical model is taken to observe the effectiveness of our designed robust hybrid control algorithm. The robust hybrid control algorithm consists of H∞ based regulation, pole-placement and tracking (RST) controller along with mixed sensitivity function is applied to control the complete model of UAV. The selected rotor craft is under-actuated, nonlinear and multivariable behavior in nature along with six degrees of freedom (DOF). Due to all these aforementioned issues its stabilization is quite difficult as compared to fully actuated systems. For the tuning of nonlinear parameters of the UAV, we designed, robust hybrid control algorithm is used. Moreover, the performance of the designed controller is compared with robust controller. The validity and effectiveness of the designed controllers are simulated in MATLAB and Simulink, in which the designed controller shows better steady state behavior, robustness and converges quickly in specific amount of time as compared to robust controller.


Sign in / Sign up

Export Citation Format

Share Document