scholarly journals Application of the Dynamic Iterative Learning Control to the Heteroplanar Active Magnetic Bearing

2020 ◽  
Vol 53 (2) ◽  
pp. 1511-1516
Author(s):  
Lukasz Hladowski ◽  
Arkadiusz Mystkowski ◽  
Krzysztof Galkowski ◽  
Eric Rogers ◽  
Bing Chu
2020 ◽  
Vol 53 (3-4) ◽  
pp. 474-484
Author(s):  
Yangbo Zheng ◽  
Xingnan Liu ◽  
Jingjing Zhao ◽  
Ni Mo ◽  
Zhengang Shi

As one of the key technologies of high-temperature gas-cooled reactor, primary helium circulator–equipped active magnetic bearing provides driving force for primary helium cooling system. However, repetitive periodic vibration produced by rotor imbalance may introduce risks to primary helium circulator (even for high-temperature gas-cooled reactors). First, this article analyzes a periodic component extraction algorithm which is widely used in active magnetic bearing rotor unbalance control methods and points out the problem that the periodic component extraction algorithm occupies numerous computing resources which cannot satisfy the real-time request of active magnetic bearing control system. Then, a novel iterative learning control algorithm based on the iteration before last iteration of system information (iterative learning control-2) and a plug-in parallel control mechanism based on the existing control system are put forward, meanwhile, an integrated independent distributed active magnetic bearing control system is designed to solve the problem. Finally, both the simulation and experiment are carried out, respectively. The corresponding results show that the control method and control system proposed in this article have significant suppression effect on the repetitive periodic vibration of the active magnetic bearing system without degrading the real-time requirement and can provide important technical support for the safe and stable operation of the primary helium circulator in high-temperature gas-cooled reactor.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Ying He ◽  
Lei Shi ◽  
Zhengang Shi ◽  
Zhe Sun

Unbalance vibrations are crucial problems in heavy rotational machinery, especially for the systems with high operation speed, like turbine machinery. For the program of 10 MW High Temperature gas-cooled Reactor with direct Gas-Turbine cycle (HTR-10GT), the rated operation speed of the turbine system is 15000 RPM which is beyond the second bending frequency. In that case, even a small residual mass will lead to large unbalance vibrations. Thus, it is of great significance to study balancing methods for the system. As the turbine rotor is designed to be suspended by active magnetic bearings (AMBs), unbalance compensation could be achieved by adequate control strategies. In the paper, unbalance compensation for the Multi-Input and Multi-Output (MIMO) active magnetic bearing (AMB) system using frequency-domain iterative learning control (ILC) is analyzed. Based on the analysis, an ILC controller for unbalance compensation of the full scale test rig, which is designed for the rotor and AMBs in HTR-10GT, is designed. Simulation results are reported which show the efficiency of the ILC controller for attenuating the unbalance vibration of the full scale test rig. This research can offer valuable design criterion for unbalance compensation of the turbine machinery in HTR-10GT.


Sign in / Sign up

Export Citation Format

Share Document