Disturbance rejection based on iterative learning control with extended state observer for a four-degree-of-freedom hybrid magnetic bearing system

2021 ◽  
Vol 153 ◽  
pp. 107465
Author(s):  
Xiaodong Sun ◽  
Zhijia Jin ◽  
Long Chen ◽  
Zebin Yang
2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Huaxiang Cai ◽  
Yongmei Huang ◽  
Junfeng Du ◽  
Tao Tang ◽  
Dan Zuo ◽  
...  

An Iterative Learning Control (ILC) method with Extended State Observer (ESO) is proposed to enhance the tracking precision of telescope. Telescope systems usually suffer some uncertain nonlinear disturbances, such as nonlinear friction and unknown disturbances. Thereby, to ensure the tracking precision, the ESO which can estimate system states (including parts of uncertain nonlinear disturbances) is introduced. The nonlinear system is converted to an approximate linear system by making use of the ESO. Besides, to make further improvement on the tracking precision, we make use of the ILC method which can find an ideal control signal by the process of iterative learning. Furthermore, this control method theoretically guarantees a prescribed tracking performance and final tracking accuracy. Finally, a few comparative experimental results show that the proposed control method has excellent performance for reducing the tracking error of telescope system.


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 324
Author(s):  
Wei Jiang ◽  
Gang Zhu ◽  
Ying Zheng

In order to solve the problems of repetitive and non-repetitive interference in the workflow of Automated Guided Vehicle (AGV), Iterative Learning Control (ILC) combined with linear extended state observer (LESO) is utilized to improve the control accuracy of AGV drive motor. Considering the working conditions of AGV, the load characteristics of the drive motor are analyzed with which the mathematical model of motor system is established. Then the third-order extended state space equations of the system approximate model is obtained, in which LESO is designed to estimate the system states and the total disturbance. For the repeatability of AGV workflow, ILC is designed to improve the control accuracy. As the goods mass transported each time is not same, the LESO is utilized to estimate the non-repetitive load disturbance in real time and compensate the disturbance of the system to improve the position precision. The convergence of the combined algorithm is also verified. Simulation and experimental results show that the proposed iterative learning control strategy based on LESO can reduce the positioning error in AGV workflow and improve the system performance.


Author(s):  
Xudong Guan ◽  
Jin Zhou ◽  
Chaowu Jin ◽  
Yuanping Xu

Some sources of disturbance inevitably exist in magnetic bearings systems in the process of operation. This article proposes a disturbance suppression scheme for active magnetic bearings systems using an improved characteristic model-based all-coefficient adaptive control algorithm. First, the mathematical model of the magnetic bearing system is established. Then, by introducing the extended state observer into the adaptive control, the adaptive control method is improved. And the simulation of the combined control of the adaptive control and extended state observer is carried out based on mathematical model of controlled object. Simulation results demonstrate that this control method can not only adjust the control parameters online, but also estimate and compensate the disturbance in real time, which improves the control performance of the controller. Finally, the feasibility of adaptive control method with extended state observer is verified by experiments. When the sinusoidal disturbance signal is introduced at the 9000 r/min, the vibration displacement of the magnetic bearing system with the improved adaptive controller is reduced around 43%, which is in accordance with the theoretical results.


2020 ◽  
Vol 53 (2) ◽  
pp. 1511-1516
Author(s):  
Lukasz Hladowski ◽  
Arkadiusz Mystkowski ◽  
Krzysztof Galkowski ◽  
Eric Rogers ◽  
Bing Chu

Sign in / Sign up

Export Citation Format

Share Document