Decreasing formaldehyde emission from medium density fiberboard panels produced by adding different amine compounds to urea formaldehyde resin

2011 ◽  
Vol 31 (7) ◽  
pp. 674-678 ◽  
Author(s):  
S. Boran ◽  
M. Usta ◽  
E. Gümüşkaya
RSC Advances ◽  
2021 ◽  
Vol 11 (40) ◽  
pp. 25010-25017
Author(s):  
Li Lu ◽  
Yan Wang ◽  
Tianhua Li ◽  
Supeng Wang ◽  
Shoulu Yang ◽  
...  

Reactions between CaCO3 and CH2O2 during polycondensation of UF resin produce Ca2+. Ionic bond complexation binds Ca2+ with UF resin. The UF resin crystalline percentage decreases from 26.86% to 22.71%. IB strength of resin bonded fiberboard increases from 0.75 to 0.94 MPa.


2015 ◽  
Vol 65 (1-2) ◽  
pp. 15-19 ◽  
Author(s):  
Warren J. Grigsby ◽  
James E. P. Carpenter ◽  
Armin Thumm ◽  
Rosie Sargent ◽  
Nancy Hati

RSC Advances ◽  
2014 ◽  
Vol 4 (73) ◽  
pp. 39037-39044 ◽  
Author(s):  
Tong-Xin Shang ◽  
Ming-Yang Zhang ◽  
Xiao-Juan Jin

The urea-formaldehyde resin adhesive in waste medium density fiberboard play a role in modifying the activated carbons.


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 29
Author(s):  
Waheed Gul ◽  
Hussein Alrobei ◽  
Syed Riaz Akbar Shah ◽  
Afzal Khan ◽  
Abid Hussain ◽  
...  

In this research work effect of embedment of multiwall carbon nanotubes (MWCNTs) on the physical and mechanical properties of medium density fiberboard (MDF) have been investigated. The MWCNTs were embedded in urea formaldehyde resin (UF) at 0, 1.5%, 3% and 5% concentrations by weight for the manufacturing of nano-MDF. The addition of these nanoparticles enhanced thermal conductivity by 24.2% reduced curing time by 20% and controlled formaldehyde emission by 59.4%. The internal bonding (I.B), modulus elasticity (MOE), modulus of rupture (MOR), thickness swelling (Ts) and water absorption (WA) properties were improved significantly by 21.15%, 30.2%, 28.3%, 44.8% and 29% respectively as compared to controlled MDF.


BioResources ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. 1618-1625 ◽  

The use of wood-base panels in humid environments, in general, presents low durability due to contact with water. In order to increase durability and reduce the attack of fungi, studies had been developed using resin with zinc oxide (ZnO) nanoparticles. This work aimed to produce medium density fiberboard with urea-formaldehyde resin and melamine-formaldehyde adding 0.5% and 1.0% of ZnO nanoparticles for the physical properties evaluation. All treatments were classified as medium density according to ABNT NBR 15.316-2 (2015) with values ranging between 550 and 800 kg*m-³. No differences were found between the two commercial adhesives used. The addition of 1.0% of nanoparticles resulted in lower density panels, higher moisture contents, and, after immersion in water for 24 hours, higher values of swelling in thickness. These results are explained by the lower compaction of the boards due to rapid cure of the adhesive using higher percentages of ZnO nanoparticles. The best treatment of the panels was with melamine-formaldehyde resin and 0.5% of nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document