formaldehyde emission
Recently Published Documents


TOTAL DOCUMENTS

319
(FIVE YEARS 80)

H-INDEX

29
(FIVE YEARS 4)

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 98
Author(s):  
Xianfeng Mo ◽  
Xinhao Zhang ◽  
Lu Fang ◽  
Yu Zhang

When thermoplastic resins such as polyethylene (PE) and polypropylene (PP) are selected as wood adhesives to bond wood particles (fibers, chips, veneers) by using the hot-pressing technique, the formaldehyde emission issue that has long existed in the wood-based panel industry can be effectively solved. In this study, in general, thermoplastic-bonded wood-based panels presented relatively higher mechanical properties and better water resistance and machinability than the conventional urea–formaldehyde resin-bonded wood-based panels. However, the bonding structure of the wood and thermoplastic materials was unstable at high temperatures. Compared with the wood–plastic composites manufactured by the extruding or injection molding methods, thermoplastic-bonded wood-based panels have the advantages of larger size, a wider raw material range and higher production efficiency. The processing technology, bonding mechanism and the performance of thermoplastic-bonded wood-based panels are comprehensively summarized and reviewed in this paper. Meanwhile, the existing problems of this new kind of panel and their future development trends are also highlighted, which can provide the wood industry with foundations and guidelines for using thermoplastics as environmentally friendly adhesives and effectively solving indoor pollution problems.


Wood Research ◽  
2021 ◽  
Vol 66 (6) ◽  
pp. 1015-1031
Author(s):  
JAKUB KAWALERCZYK ◽  
JOANNA SIUDA ◽  
DOROTA DZIURKA ◽  
RADOSŁAW MIRSKI ◽  
MAGDALENA WOŹNIAK ◽  
...  

Formaldehyde emission still remains a major disadvantage of widely applied formaldehyde-containing amino resins such as UF (urea-formaldehyde) resin and MUF (melamine-urea-formaldehyde) resin. The compositions of adhesives for plywood manufacturing have to contain a proper extenders in order to adjust their viscosity. Thus, the aim of the study was to investigate the effect of protein-rich soy flour (SF) as the extender for adhesives. The composition of flours and their ability to absorb the formaldehyde were determined. Properties of liquid resins such as gel time, viscosity, pH and solid content were investigated. The possible chemical interaction between the extenders and resins were assessed with the use of FTIR spectroscopy. Plywood panels manufactured using UF and MUF adhesives with the soy flour introduced as the extender in various concentrations were tested in terms of shear strength and formaldehyde release. Studies have shown that soy flour has a favorable composition and formaldehyde-scavenging ability. The addition of SF affected resins properties such as viscosity and gel time but showed no influence on their pH and solid content. FTIR analysis has not explained the chemical interaction between resin and extender. The application of soy flour in the concentration of 15% for UF resin and 10% for MUF resin allowed to produce plywood characterized by improved bonding quality and decreased formaldehyde emission.


Author(s):  
Hucheng Zhang ◽  
Xincheng Tang ◽  
Qibin Zhang ◽  
Xinqi Qiao ◽  
Xiaoyuan Fang

The aim of this study is to evaluate the effects of diesel from direct coal liquefaction (DDCL) and diesel from indirect coal liquefaction (DICL) on combustion and emissions. A six-cylinder turbocharged diesel engine fueled with DDCL, DICL, petroleum diesel (PD), 58% DDCL, and 42% DICL blended by volume (BD58) is used. The experiments are carried out at 1400 and 2300rpm engine speeds and various engine loads (10%, 25%, 50%, 75%, and 90% of the full-load). The results show that the brake thermal efficiency (BTE) of PD was higher than that of CTL (the maximum difference was 2%) at medium and high loads. At 10% load of 1400 rpm, the CO, HC and formaldehyde emissions of DDCL are 88.9%, 44.3% and 26.5% higher than those of PD respectively, and the CO, HC, and formaldehyde emissions of DICL are 30.1%, 15.3%, and 15.2% lower than those of PD. The differences among four fuels decrease rapidly with the increase of load. The NOX emissions of PD are the highest due to high nitrogen content (102.3 μg/g) and low hydrogen-carbon (H/C) ratio. The fuel with higher cetane number has less formaldehyde emission at low loads, while the fuel with lower H/C has less formaldehyde emission at high loads. The particle size distribution shows a bimodal shape at different loads and the peak particle size of accumulation mode and nucleation mode all increases with the increase of load. The particulate emission of different fuels from high to low is the order of PD > DDCL > BD58 > DICL. In addition, the emissions of polycyclic aromatic hydrocarbons (PAHs) and toxicity equivalent (TE) of PD are highest at all loads. The proportion of soluble organic fractions (SOF) from DDCL, DICL, and BD58 is higher than that of PD.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3502
Author(s):  
Hamed Younesi-Kordkheili ◽  
Antonio Pizzi

The research aim of this work is to determine the influence of lignin modification methods on lignin–phenol–formaldehyde (LPF) adhesive properties. Thus, glyoxal (G), phenol (P), ionic liquid (IL), and maleic anhydride (MA) were used to modify lignin. The modified lignins were used for phenol substitution (50 wt%) in phenol–formaldehyde adhesives. The prepared resins were then used for the preparation of wood particleboard. These LPF resins were characterized physicochemically, namely by using standard methods to determine gel time, solids content, density, and viscosity, thus the physicochemical properties of the LPF resins synthesized. The panels dimensional stability, formaldehyde emission, bending modulus, bending strength, and internal bond (IB) strength were also measured. MA-modified lignin showed by differential scanning calorimetry (DSC) the lowest temperature of curing than the resins with non-modified lignin and modified with IL, phenolared lignin, and glyoxal. LPF resins with lignin treated with maleic anhydride presented a shorter gel time, higher viscosity, and solids content than the resins with other lignin modifications. Equally, the particleboard panels prepared with LPF resins with maleic anhydride or with ionic liquid had the lowest formaldehyde emission and the highest mechanical strength among all the synthesized resins. The dimensional stability of all panels bonded with modified lignin LPF resins presented no difference of any significance.


2021 ◽  
pp. 146808742110479
Author(s):  
Alexander D Gelner ◽  
Harald A Beck ◽  
Christian Pastoetter ◽  
Martin Härtl ◽  
Georg Wachtmeister

Polyoxymethylene dimethyl ethers (OME) are promising candidates as substitutes for fossil diesel fuel. A regenerative electricity-based production, using captured airborne carbon dioxide (CO2) and hydrogen (H2) from water electrolysis as reactants, provides a valuable contribution to the energy transition in mobile applications. Besides the possibility of carbon-neutral production, OME offer the advantage of a sootless combustion, which resolves the trade-off between soot and nitrogen oxides (NOx) emissions, and supports the efforts of air pollution control. While the emission behaviour of OME-powered diesel engines in raw exhaust has been studied extensively, interactions between this exhaust and components of the after-treatment system are mainly unknown. This study contains investigations conducted using a urea dosing variation (alpha titration) on a heavy-duty engine in combination with a system for selective catalytic reduction (SCR). These investigations showed a lower NOx reduction efficiency in OME operation in partial load operation compared with the one in fossil diesel operation. This can be attributed, among other reasons, to lower exhaust temperatures in OME operation. However, the high tolerance of OME to exhaust gas recirculation (EGR) compensates for this disadvantage because of the reduction of the raw NOx emission level. The difference in SCR efficiency disappeared at a high load operation point. Additionally, the alpha titration revealed, that urea dosing decreases formaldehyde emission in the SCR system. A pre-conditioned WHSC and WHTC cycle demonstrated the potential of an OME engine with after-treatment in the form of a twin-dosing SCR system for ultra-low emissions. For the specific evaluation of the emissions during these test cycles, this study contains the detailed calculation of the required factors – so-called ‘ u-values’– for OME exhaust according to the technical standard UN/ECE R49.


2021 ◽  
Vol 11 (18) ◽  
pp. 8720
Author(s):  
Gabriela Balea Paul ◽  
Maria Cristina Timar ◽  
Octavia Zeleniuc ◽  
Aurel Lunguleasa ◽  
Camelia Coșereanu

The aim of this research was to evaluate the potential of magnesium lignosulfonate as adhesive in particleboard manufacturing. Diphenylmethane diisocyanate (PMDI) between 1% and 3% and glucose (1% of the lignosulfonate content) were added as potential cross-linkers in the adhesive formulations. Mixed beech and spruce wood, 30% beech wood and 70% spruce wood, were employed for the configuration of the panel structure. The density, mechanical properties and formaldehyde emission of single-layer particleboard were investigated. Spectroscopic analysis (FTIR) revealed structural changes brought by oxidation that may indicate depolymerization by the splitting of C-O-C bonds and formation of carbonyl groups. Mechanical properties were improved, and the highest average values were recorded for panels having as adhesives oxidized lignin with cross-linkers as follow: 15 N/mm2 (MOR), 3320 N/mm2 (MOE) and 0.48 N/mm2 (IB). The density profile presented higher values for faces in case of oxidized lignin panels. Changes were observed for oxidized lignin with cross-linker panels wherein the core had higher values. The results showed that the panels manufactured with adhesives composed of oxidized lignosulfonate (20% of the dried wood particles weight) and the addition of PMDI and glucose in various percentages have a positive influence on their formaldehyde release and mechanical properties requested by EN 312 (2004) standard.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2775 ◽  
Author(s):  
Petar Antov ◽  
Viktor Savov ◽  
Neno Trichkov ◽  
Ľuboš Krišťák ◽  
Roman Réh ◽  
...  

The potential of ammonium lignosulfonate (ALS) as an eco-friendly additive to urea–formaldehyde (UF) resin for manufacturing high-density fiberboard (HDF) panels with acceptable properties and low free formaldehyde emission was investigated in this work. The HDF panels were manufactured in the laboratory with very low UF resin content (4%) and ALS addition levels varying from 4% to 8% based on the mass of the dry wood fibers. The press factor applied was 15 s·mm−1. The physical properties (water absorption and thickness swelling), mechanical properties (bending strength, modulus of elasticity, and internal bond strength), and free formaldehyde emission were evaluated in accordance with the European standards. In general, the developed HDF panels exhibited acceptable physical and mechanical properties, fulfilling the standard requirements for HDF panels for use in load-bearing applications. Markedly, the laboratory-produced panels had low free formaldehyde emission ranging from 2.0 to 1.4 mg/100 g, thus fulfilling the requirements of the E0 and super E0 emission grades and confirming the positive effect of ALS as a formaldehyde scavenger. The thermal analyses performed, i.e., differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), and derivative thermogravimetry (DTG), also confirmed the main findings of the research. It was concluded that ALS as a bio-based, formaldehyde-free adhesive can be efficiently utilized as an eco-friendly additive to UF adhesive formulations for manufacturing wood-based panels under industrial conditions.


Sign in / Sign up

Export Citation Format

Share Document