Sulfated modification can enhance antiviral activities of Achyranthes bidentata polysaccharide against porcine reproductive and respiratory syndrome virus (PRRSV) in vitro

Author(s):  
Chuanmin Liu ◽  
Huijuan Chen ◽  
Kun Chen ◽  
Yanfeng Gao ◽  
Song Gao ◽  
...  
Coronaviruses ◽  
2020 ◽  
Vol 01 ◽  
Author(s):  
Ashraf Talaat Youssef

The pandemic of COVID-19 had started in Wuhan city china in late 2019 with a subsequent worldwide spread. The viral infection can seriousely affect multiple organs mainly lungs, kidneys, heart, liver and brain and may lead to respiratory, renal, cardiac or hepatic failure.Vascular thrombosis of unexplained mechanism that may lead to widespread blood clots in multiple organs and cytokine storms that result of overstimulation of the immune system subsequent of lung damage may lead to sudden decompensation due to hypotension and more damage to liver, kidney, brain or lungs.Until now no drug had proved efficient in getting rid of the problem and controlling the pandemic mainly depends on preventive measures.Many preventive measures can be considered to prevent the worldwide spread of viral transmission. Polyunsaturated long chain fatty acids (PUFAs) and the medium chain saturated fatty acids (MCSFAs) and their corresponding monoglycerides had high antiviral activities against the enveloped viruses which reach to more than 10,000 -fold reduction in the viral titres in vitro and in vivo after testing of its gastric aspirate, and can contribute to the systemic immunity against the enveloped viruses.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Hongfang Ma ◽  
Rui Li ◽  
Longguang Jiang ◽  
Songlin Qiao ◽  
Xin-xin Chen ◽  
...  

AbstractPorcine reproductive and respiratory syndrome (PRRS) is a serious disease burdening global swine industry. Infection by its etiological agent, PRRS virus (PRRSV), shows a highly restricted tropism of host cells and has been demonstrated to be mediated by an essential scavenger receptor (SR) CD163. CD163 fifth SR cysteine-rich domain (SRCR5) is further proven to play a crucial role during viral infection. Despite intense research, the involvement of CD163 SRCR5 in PRRSV infection remains to be elucidated. In the current study, we prepared recombinant monkey CD163 (moCD163) SRCR5 and human CD163-like homolog (hCD163L1) SRCR8, and determined their crystal structures. After comparison with the previously reported crystal structure of porcine CD163 (pCD163) SRCR5, these structures showed almost identical structural folds but significantly different surface electrostatic potentials. Based on these differences, we carried out mutational research to identify that the charged residue at position 534 in association with the one at position 561 were important for PRRSV-2 infection in vitro. Altogether the current work sheds some light on CD163-mediated PRRSV-2 infection and deepens our understanding of the viral pathogenesis, which will provide clues for prevention and control of PRRS.


2014 ◽  
Vol 9 (5) ◽  
pp. 531-542 ◽  
Author(s):  
Waqas Ahmad ◽  
Sohail Ejaz ◽  
Khaleeq Anwar ◽  
Muhammad Ashraf

AbstractInfectious bursal disease (IBD) caused by non-enveloped double stranded RNA virus is an acute and contagious poultry disease. Outbreak of IBD could result in 10–75% mortality of the birds; hence it has gained socio-economic importance worldwide. Medicinal plants have shown broad spectrum anti-viral activities against RNA and DNA viruses. Moringa oleifera Lam (MOL), Phyllanthus emblicus Linn (PEL), Glycyrrhiza glabra Linn (GGL), and Eugenia jambolana Lam (EJL) are commonly available medicinal plants of the sub-continent and exhibited anti-viral potential against different viruses. Ethanolic extracts of the leaves of MOL and EJL, roots of GGL and dried fruit of PEL were investigated for their cytotoxic and anti-viral potential against IBD virus using MTT colorimetric assay and anti-viral assay. Significant anti-viral potential (P<0.001) was demonstrated at concentrations 12.5, 25, 50 and 100 µg ml−1 of GGL, PEL, MOL and EJL, respectively, with no cytotoxicity. Data also spotlighted that all tested plant extracts possess significant anti-viral potential and this trend was higher in GGL followed by PEL, MOL, and EJL. The data undoubtedly conclude that these medicinal plants contain several health beneficial phyto-chemicals which got significant anti-viral potential and effectively be utilized against IBD virus. Moreover, the outcomes of this study provide a platform on the way to discover novel anti-viral agents against IBD virus and other viruses from plant origin.


2009 ◽  
Vol 83 (18) ◽  
pp. 9449-9463 ◽  
Author(s):  
Jun Han ◽  
Mark S. Rutherford ◽  
Kay S. Faaberg

ABSTRACT The N terminus of the replicase nonstructural protein 2 (nsp2) of porcine reproductive and respiratory syndrome virus (PRRSV) contains a putative cysteine protease domain (PL2). Previously, we demonstrated that deletion of either the PL2 core domain (amino acids [aa] 47 to 180) or the immediate downstream region (aa 181 to 323) is lethal to the virus. In this study, the PL2 domain was found to encode an active enzyme that mediates efficient processing of nsp2-3 in CHO cells. The PL2 protease possessed both trans- and cis-cleavage activities, which were distinguished by individual point mutations in the protease domain. The minimal size required to maintain these two enzymatic activities included nsp2 aa 47 to 240 (Tyr47 to Cys240) and aa 47 to 323 (Tyr47 to Leu323), respectively. Introduction of targeted amino acid mutations in the protease domain confirmed the importance of the putative Cys55- His124 catalytic motif for nsp2/3 proteolysis in vitro, as were three additional conserved cysteine residues (Cys111, Cys142, and Cys147). The conserved aspartic acids (e.g., Asp89) were essential for the PL2 protease trans-cleavage activity. Reverse genetics revealed that the PL2 trans-cleavage activity played an important role in the PRRSV replication cycle in that mutations that impaired the PL2 protease trans function, but not the cis activity, were detrimental to viral viability. Lastly, the potential nsp2/3 cleavage site was probed. Mutations with the largest impact on in vitro cleavage were at or near the G1196|G1197 dipeptide.


Author(s):  
Jainey James ◽  
Divya Jyothi ◽  
Sneh Priya

Aims: The present study aim was to analyse the molecular interactions of the phytoconstituents known for their antiviral activity with the SARS-CoV-2 nonstructural proteins such as main protease (6LU7), Nsp12 polymerase (6M71), and Nsp13 helicase (6JYT). The applied in silico methodologies was molecular docking and pharmacophore modeling using Schrodinger software. Methods: The phytoconstituents were taken from PubChem, and SARS-CoV-2 proteins were downloaded from the protein data bank. The molecular interactions, binding energy, ADMET properties and pharmacophoric features were analysed by glide XP, prime MM-GBSA, qikprop and phase application of Schrodinger respectively. The antiviral activity of the selected phytoconstituents was carried out by PASS predictor, online tools. Results: The docking score analysis showed that quercetin 3-rhamnoside (-8.77 kcal/mol) and quercetin 3-rhamnoside (-7.89 kcal/mol) as excellent products to bind with their respective targets such as 6LU7, 6M71 and 6JYT. The generated pharmacophore hypothesis model validated the docking results, confirming the hydrogen bonding interactions of the amino acids. The PASS online tool predicted constituent's antiviral potentials. Conclusion: The docked phytoconstituents showed excellent interactions with the SARS-CoV-2 proteins, and on the outset, quercetin 3-rhamnoside and quercetin 7-rhamnoside have well-interacted with all the three proteins, and these belong to the plant Houttuynia cordata. The pharmacophore hypothesis has revealed the characteristic features responsible for their interactions, and PASS prediction data has supported their antiviral activities. Thus, these natural compounds could be developed as lead molecules for antiviral treatment against SARS-CoV-2. Further in-vitro and in-vivo studies could be carried out to provide better drug therapy.


Author(s):  
Fabrício Freitas Fernandes ◽  
Amanda Latercia Tranches Dias ◽  
Cíntia Lacerda Ramos ◽  
Masaharu Ikegaki ◽  
Antonio Martins de Siqueira ◽  
...  

Cryptococcosis is a worldwide disease caused by the etiological agent Cryptococcus neoformans. It affects mainly immunocompromised humans. It is relatively rare in animals only affecting those that have received prolonged antibiotic therapy. The propolis is a resin that can present several biological properties, including antibacterial, antifungal and antiviral activities. The standard strain C. neoformans ATTC 90112 was used to the antifungal evaluation. The tests were realized with propolis ethanol extract (PEE) G12 in concentrations from 0.1 to 1.6 mg mL-1. The evaluation of MIC and MFC were done according to DUARTE (2002)5. The inhibitory effect of PEE G12 on the fungal growing was seen at the concentration of 0.2 mg mL-1 and 1.6 mg mL-1 was considered a fungicidal one.


2015 ◽  
Vol 11 (4) ◽  
pp. 394-399 ◽  
Author(s):  
Ming Yang ◽  
Yan Lu ◽  
Yuanyuan Ma ◽  
Guoying Wu ◽  
Ross C. Beier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document