Plane strain dynamic responses of a multi-layered transversely isotropic saturated half-space

2017 ◽  
Vol 119 ◽  
pp. 55-77 ◽  
Author(s):  
Zhenning Ba ◽  
Zeqing Kang ◽  
Vincent W. Lee
2002 ◽  
Vol 69 (3) ◽  
pp. 340-345 ◽  
Author(s):  
L. M. Brock

A plane-strain study of steady sliding by a smooth rigid indentor at any constant speed on a class of orthotropic or transversely isotropic half-spaces is performed. Exact solutions for the full displacement fields are constructed, and applied to the case of the generic parabolic indentor. The closed-form results obtained confirm previous observations that physically acceptable solutions arise for sliding speeds below the Rayleigh speed, for a single critical transonic speed, and for all supersonic speeds. Continuity of contact zone traction is lost for the latter two cases. Calculations for five representative materials indicate that contact zone width achieves minimum values at high, but not critical, subsonic sliding speeds. A key feature of the analysis is the factorization that gives, despite anisotropy, solution expressions that are rather simple in form. In particular, a compact function of the Rayleigh-type emerges that leads to a simple exact formula for the Rayleigh speed itself.


2014 ◽  
Vol 61-62 ◽  
pp. 135-139 ◽  
Author(s):  
Morteza Eskandari-Ghadi ◽  
Seyed Masoud Nabizadeh ◽  
Azizollah Ardeshir-Behrestaghi

2017 ◽  
Vol 84 (11) ◽  
Author(s):  
Yilan Huang ◽  
Guozhan Xia ◽  
Weiqiu Chen ◽  
Xiangyu Li

Exact solutions to the three-dimensional (3D) contact problem of a rigid flat-ended circular cylindrical indenter punching onto a transversely isotropic thermoporoelastic half-space are presented. The couplings among the elastic, hydrostatic, and thermal fields are considered, and two different sets of boundary conditions are formulated for two different cases. We use a concise general solution to represent all the field variables in terms of potential functions and transform the original problem to the one that is mathematically expressed by integral (or integro-differential) equations. The potential theory method is extended and applied to exactly solve these integral equations. As a consequence, all the physical quantities of the coupling fields are derived analytically. To validate the analytical solutions, we also simulate the contact behavior by using the finite element method (FEM). An excellent agreement between the analytical predictions and the numerical simulations is obtained. Further attention is also paid to the discussion on the obtained results. The present solutions can be used as a theoretical reference when practically applying microscale image formation techniques such as thermal scanning probe microscopy (SPM) and electrochemical strain microscopy (ESM).


1989 ◽  
Vol 56 (2) ◽  
pp. 251-262 ◽  
Author(s):  
T. W. Shield ◽  
D. B. Bogy

The plane-strain problem of a smooth, flat rigid indenter contacting a layered elastic half space is examined. It is mathematically formulated using integral transforms to derive a singular integral equation for the contact pressure, which is solved by expansion in orthogonal polynomials. The solution predicts complete contact between the indenter and the surface of the layered half space only for a restricted range of the material and geometrical parameters. Outside of this range, solutions exist with two or three contact regions. The parameter space divisions between the one, two, or three contact region solutions depend on the material and geometrical parameters and they are found for both the one and two layer cases. As the modulus of the substrate decreases to zero, the two contact region solution predicts the expected result that contact occurs only at the corners of the indenter. The three contact region solution provides an explanation for the nonuniform approach to the half space solution as the layer thickness vanishes.


Sign in / Sign up

Export Citation Format

Share Document