scholarly journals Discussion: “Contact Stress Analysis of a Layered Transversely Isotropic Half-Space” (Kuo, C. H., and Keer, L. M., 1992, ASME J. Tribol., 114, pp. 253–261)

1992 ◽  
Vol 114 (2) ◽  
pp. 261-262
Author(s):  
K. Komvopoulos
1971 ◽  
Vol 38 (3) ◽  
pp. 608-614 ◽  
Author(s):  
Y. C. Pao ◽  
Ting-Shu Wu ◽  
Y. P. Chiu

This paper is concerned with the plane-strain problem of an elastic layer supported on a half-space foundation and indented by a cylinder. A study is presented of the effect of the contact condition at the layer-foundation interface on the contact stresses of the indented layer. For the general problem of elastic indenter or elastic foundation, the integral equations governing the contact stress distribution of the indented layer derived on the basis of two-dimensional theory of elasticity are given and a numerical method of solution is formulated. The limiting contact conditions at the layer-foundation interface are then investigated by considering two extreme cases, one with the indented layer in frictionless contact with the half space and the other with the indented layer rigidly adhered to the half space. Graphs of the bounds on the maximum normal stress occurring in indented elastic layers for the cases of rigid cylindrical indenter and rigid half-space foundation are obtained for possible practical applications. Some results of the elastic indenter problem are also presented and discussed.


Author(s):  
Layue Zhao ◽  
Robert C Frazer ◽  
Brian Shaw

With increasing demand for high speed and high power density gear applications, the need to optimise gears for minimum stress, noise and vibration becomes increasingly important. ISO 6336 contact and bending stress analysis are used to determine the surface load capacity and tooth bending strength but dates back to 1956 and although it is constantly being updated, a review of its performance is sensible. Methods to optimise gear performance include the selection of helix angle and tooth depth to optimise overlap ratio and transverse contact ratio and thus the performance of ISO 6336 and tooth contact analysis methods requires confirmation. This paper reviews the contact and bending stress predicted with four involute gear geometries and proposes recommendations for stress calculations, including a modification to contact ratio factor Zɛ which is used to predict contact stress and revisions to form factor YF and helix angle factor Yβ which are cited to evaluate bending stress. The results suggest that there are some significant deviations in predicted bending and contact stress values between proposal methods and original ISO standard. However, before the ISO standard is changed, the paper recommends that allowable stress numbers published in ISO 6336-5 are reviewed because the mechanisms that initiate bending and contact fatigue have also changed and these require updating.


2014 ◽  
Vol 61-62 ◽  
pp. 135-139 ◽  
Author(s):  
Morteza Eskandari-Ghadi ◽  
Seyed Masoud Nabizadeh ◽  
Azizollah Ardeshir-Behrestaghi

2013 ◽  
Vol 57 (1-2) ◽  
pp. 40-49 ◽  
Author(s):  
Seok-Chul Hwang ◽  
Jin-Hwan Lee ◽  
Dong-Hyung Lee ◽  
Seung-Ho Han ◽  
Kwon-Hee Lee

Sign in / Sign up

Export Citation Format

Share Document