Control of a wind turbine cluster based on squirrel cage induction generators connected to a single VSC power converter

Author(s):  
Agustí Egea-Alvarez ◽  
Adrià Junyent-Ferre ◽  
Joan Bergas-Jané ◽  
Fernando D. Bianchi ◽  
Oriol Gomis-Bellmunt
Author(s):  
W. D. Zhu ◽  
X. F. Wang

Traditional transmission in wind turbine applications has a constant output-to-input speed ratio, which needs a power converter to regulate the current frequency that can be fed into the grid. Different types of continuously variable transmission (CVT) have been developed for vehicle and wind turbine applications, which can generate constant-frequency current without using a power converter in a wind turbine. An infinitely variable speed converter (IVSC) is a specific type of CVT that can achieve a zero speed ratio and transmit a large torque at a low speed ratio. An IVSC with drivers that convert an eccentric motion of cams to a concentric motion of the output shaft through one-way bearings is introduced, and an active control system with a combined feedback and feed forward control that can automatically adjust the eccentricity of the outer cams to control the speed ratio of the transmission is developed. The kinematic model of the IVSC is derived and fitted by a polynomial function to serve as the feed forward function in the control law. The feedback control is used to reduce the system error. A dynamic model of the IVSC is derived to investigate the effect of the dynamic load on the input and output speeds. Static and dynamic tests were conducted to validate the kinematic model of the IVSC. The variation of the average output speed per revolution of the output shaft is 0.56% with respect to the desired output speed in the simulation and 0.91% in the experiments.


Author(s):  
Maruf A. Aminu

This paper is presented in an attempt to validate the dynamic response of a microgrid to line-to-line short circuit. The microgrid components include two identical Wind Turbine Generators (WTGs) tied to a 100MVA, 13.8kV utility via a Point of Common Coupling (PCC). The utility-microgrid testbed is modeled in SIMPOWERSystems® using two Doubly-Fed Induction Generators (DFIGs) in the microgrid side. While in islanded operating mode, line-to-line short circuit fault is applied at 6.0s and withdrawn at 8.0s, obtaining a 50.0s dynamic response of the system for different fault locations, under voltage and reactive power control regimes of the wind turbine controller. For measurement purpose, the absolute value of the stator complex voltage is transformed to  reference frame. Bidirectional power flow between the two feeders is established in the study. The study also confirms that the microgrid composed of DFIGs offer reactive power management capability, particularly by presenting superior performance when stressed under Q control regime than under V control regime. Finally, the response of the testbed to line-to-line short circuit has been validated and shown to be consistent with established short circuit theory.


2021 ◽  
Vol 8 ◽  
Author(s):  
Kenneth E. Okedu ◽  
Hind F. A. Barghash

The major aim for achieving the successful synchronization of a wind turbine system to the grid is to mitigate electrical and mechanical stresses on the wind generator. During transient state, the gearbox, shaft, and rotor of the wind generator could be damaged due to mechanical stress. The rotor and stator windings of the wind generator, including its insulation, could be affected. This paper undertakes an extensive analysis of the effects of the excitation parameters of the power converter Insulated Gate Bipolar Transistors (IGBTs), on the transient state performance of the Doubly Fed Induction Generator (DFIG), considering different scenarios. The optimal excitation parameters of IGBTs were used for further analysis of the wind generator, considering a new Phase-Locked-Loop (PLL) scheme. The PLL computes the phase displacement of the grid required to achieve orientation and synchronization control. Consequently, it helps in preventing power system distortion due to stator-grid interphase. This paper proposes a new approach that integrates PLL control strategy and a Series Dynamic Braking Resistor (SDBR) to augment the fault ride through capability of a variable speed wind turbine that is DFIG-based. The SDBR helps the post fault recovery of the wind generator. Simulations were run in Power System Computer Aided Design and Electromagnetic Transient state Including DC (PSCAD/EMTDC) to examine severe fault conditions, and to test the robustness of the controllers employed. The results show that the proposed hybrid control strategy aids the fast recovery of the DFIG wind generator variables during fault conditions.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2578 ◽  
Author(s):  
Krishnamoorthi Sivalingam ◽  
Steven Martin ◽  
Abdulqadir Singapore Wala

Aerodynamic performance of a floating offshore wind turbine (FOWT) is significantly influenced by platform surging motions. Accurate prediction of the unsteady aerodynamic loads is imperative for determining the fatigue life, ultimate loads on key components such as FOWT rotor blades, gearbox and power converter. The current study examines the predictions of numerical codes by comparing with unsteady experimental results of a scaled floating wind turbine rotor. The influence of platform surge amplitude together with the tip speed ratio on the unsteady aerodynamic loading has been simulated through unsteady CFD. It is shown that the unsteady aerodynamic loads of FOWT are highly sensitive to the changes in frequency and amplitude of the platform motion. Also, the surging motion significantly influences the windmill operating state due to strong flow interaction between the rotating blades and generated blade-tip vortices. Almost in all frequencies and amplitudes, CFD, LR-BEM and LR-uBEM predictions of mean thrust shows a good correlation with experimental results.


Sign in / Sign up

Export Citation Format

Share Document