A game theoretical approach for sub-transmission and generation expansion planning utilizing multi-regional energy systems

Author(s):  
Mohammad Navidi ◽  
Seyed Masoud Moghaddas Tafreshi ◽  
Amjad Anvari-Moghaddam
Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1416 ◽  
Author(s):  
Mohammad Navidi ◽  
Seyed Masoud Moghaddas Tafreshi ◽  
Amjad Anvari-Moghaddam

In order to facilitate the transformation of the existing generation and transmission networks’ structure into a scalable and competitive grid structure, this paper introduced regional energy systems (RGESs) that have the role of aggregating distributed energy resources (DERs) and flexible loads. The economic justification for the expansion of sub-transmission networks in the presence of regional energy systems was also investigated. To achieve this goal, multi-criteria optimization solutions were employed to find techno-economic solutions. While solving the proposed multi-criteria optimization problem, a Pareto front was determined to show the tradeoff between the criteria examined. In addition, fuzzy satisfying and the max-min method were used for finding equilibrium point. In order to demonstrate the performance and effectiveness of the proposed model, a realistic sub-transmission system in Guilan Province, Iran, was used as a test system and the results were compared to those from a traditional sub-transmission expansion planning model.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 495
Author(s):  
Jessica Thomsen ◽  
Noha Saad Hussein ◽  
Arnold Dolderer ◽  
Christoph Kost

Due to the high complexity of detailed sector-coupling models, a perfect foresight optimization approach reaches complexity levels that either requires a reduction of covered time-steps or very long run-times. To mitigate these issues, a myopic approach with limited foresight can be used. This paper examines the influence of the foresight horizon on local energy systems using the model DISTRICT. DISTRICT is characterized by its intersectoral approach to a regionally bound energy system with a connection to the superior electricity grid level. It is shown that with the advantage of a significantly reduced run-time, a limited foresight yields fairly similar results when the input parameters show a stable development. With unexpected, shock-like events, limited foresight shows more realistic results since it cannot foresee the sudden parameter changes. In general, the limited foresight approach tends to invest into generation technologies with low variable cost and avoids investing into demand reduction or efficiency with high upfront costs as it cannot compute the benefits over the time span necessary for full cost recovery. These aspects should be considered when choosing the foresight horizon.


Sign in / Sign up

Export Citation Format

Share Document