Effects of R-ratio on high-temperature fatigue crack growth behavior of a precipitation-hardening stainless steel

2008 ◽  
Vol 30 (12) ◽  
pp. 2147-2155 ◽  
Author(s):  
K HSU ◽  
C LIN
1979 ◽  
Vol 101 (3) ◽  
pp. 191-198 ◽  
Author(s):  
D. A. Hale ◽  
C. W. Jewett ◽  
J. N. Kass

The fatigue crack growth behavior of four structural alloys was studied and the effects of high temperature (288°C), high purity oxygenated water, cycle frequency, and mean stress were evaluated. The results for carbon and low alloy steel show that while crack growth rates are affected by the water environment, modified ASME code procedures result in conservative predictions of growth. Often, higher crack growth rates are found for shallow cracks than for deep cracks. For stainless steels and Inconel the measured growth rates in water were similar to data obtained in air over the range of cycle frequencies studied.


Author(s):  
Seokmin Hong ◽  
Ki-Deuk Min ◽  
Soon-Hyeok Jeon ◽  
Bong-Sang Lee

In this study, the fatigue crack growth behavior of Type 347 stainless steel (SS) used in pressurizer surge line in Korea Standard Nuclear Power Plant was analyzed. Environmental fatigue crack growth rates (FCGRs) were evaluated using pre-cracked compact tension (CT) specimens under the various simulated PWR water conditions; different levels of dissolved oxygen (DO) and loading frequencies. FCGRs of 347SSs were accelerated under PWR water conditions. When DO levels increased and frequency decreased, FCGR of 347SS increased. Under the more corrosive environment at crack tip, FCGRs were accelerated more. FCGRs of 347SSs under PWR water condition were compared with reference FCGR curves of stainless steel in ASME code section XI, ASME Code Case N-809, and JSME based on FCGR data of 304SS and 316SS. In this study, FCGRs of 347SS were slightly faster than reference curves in JSME under PWR environment but slower than that in JSME under BWR environment. Compared to reference FCGR curve in ASME Code Case N-809, FCGRs of 347 stainless steels are similar or slightly higher.


2013 ◽  
Vol 55 ◽  
pp. 703-709 ◽  
Author(s):  
Punit Arora ◽  
P.K. Singh ◽  
V.Bhasin ◽  
K.K. Vaze ◽  
D.M. Pukazhendhi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document