scholarly journals Carbon capture and storage across fuels and sectors in energy system transformation pathways

2017 ◽  
Vol 57 ◽  
pp. 34-41 ◽  
Author(s):  
Matteo Muratori ◽  
Haroon Kheshgi ◽  
Bryan Mignone ◽  
Leon Clarke ◽  
Haewon McJeon ◽  
...  
Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2319 ◽  
Author(s):  
Peter Viebahn ◽  
Emile Chappin

For many years, carbon capture and storage (CCS) has been discussed as a technology that may make a significant contribution to achieving major reductions in greenhouse gas emissions. At present, however, only two large-scale power plants capture a total of 2.4 Mt CO2/a. Several reasons are identified for this mismatch between expectations and realised deployment. Applying bibliographic coupling, the research front of CCS, understood to be published peer-reviewed papers, is explored to scrutinise whether the current research is sufficient to meet these problems. The analysis reveals that research is dominated by technical research (69%). Only 31% of papers address non-technical issues, particularly exploring public perception, policy, and regulation, providing a broader view on CCS implementation on the regional or national level, or using assessment frameworks. This shows that the research is advancing and attempting to meet the outlined problems, which are mainly non-technology related. In addition to strengthening this research, the proportion of papers that adopt a holistic approach may be increased in a bid to meet the challenges involved in transforming a complex energy system. It may also be useful to include a broad variety of stakeholders in research so as to provide a more resilient development of CCS deployment strategies.


Author(s):  
Kostantinos Atsonios ◽  
Antonios Koumanakos ◽  
Kyriakos D. Panopoulos ◽  
Aggelos Doukelis ◽  
Emmanuel Kakaras

Carbon Capture and Storage can either concern the removal of carbon as CO2 in flue gases (post-combustion option) or before its combustion in a Gas Turbine (pre-combustion option). Among the numerous CO2 capture technologies, amine scrubbing (MEA and MDEA), physical absorption (Selexol™ and Rectisol™) and H2 separator membrane reactors are investigated and compared in this study. In the pre-combustion options, the final fuel combusted in the GT is a rich-H2 fuel. Process simulations in ASPEN Plus™ showed that the case of H2 separation with Pd-based membranes has the greatest performance as far as the net efficiency of the energy system is concerned. The economic assessment reveals that the technology is promising in terms of cost of CO2 avoided, provided that the current high membrane costs are reduced.


2021 ◽  
Vol 9 ◽  
Author(s):  
Guangming Zhang ◽  
Peiran Xie ◽  
Shuhao Huang ◽  
Zhenyu Chen ◽  
Ming Du ◽  
...  

To address climate change and environmental pollution, an increasing number of renewable energy source generations are connected to the grid; meanwhile, the need for carbon capture and pollutant reduction for traditional energy has increased in urgency. In this study, the dispatch problem for an integrated energy system (IES) is expanded considering renewable penetration, carbon capture, and pollutant reduction. First of all, detailed models of carbon and pollutants reductions systems are set up. Specifically, the carbon capture system’s characteristics, which contribute more flexibility for the conventional power plants, are clarified. In addition, the treatment process of pollutants containing SO2 and NOx is elaborated. Moreover, the structure of an evolutionary IES containing pollutants treatment, battery and thermal energy storage, and carbon capture and storage systems are put forward. On this basis, the model of IES for renewable energy penetration and environmental protection considering the constraint of pollutant ultra-low emissions is set up. Finally, the simulation results show that the proposed approach can improve renewable energy penetration and restrain carbon and pollutants emissions.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1913
Author(s):  
Christos S. Ioakimidis ◽  
Hana Gerbelova ◽  
Ali Bagheri ◽  
Sesil Koutra ◽  
Nikolaos Koukouzas

This paper presents a roadmap performed in 2010 as part of a European project for the modelling of carbon capture and storage technology, and various scenarios with different taxations and permit prices for the CO2 emissions considering the Greek national plans, then the gradual decommissioning of various lignite or other units of electricity power plants. In addition, this study presents a first check, 10 years after its writing, of the current situation of the Greek energy system, regarding the correspondence of the roadmap designed in 2010 to what has been finally executed during this period, including the possibility of other energy sources complimenting or substituting the national strategic energy plans. For this purpose, the integrated MARKAL-EFOM system (TIMES) was employed to model the Greek energy system and evaluate its development over time, until 2040, by analyzing three different scenarios with respect to taxation and permit prices for carbon emissions. The results obtained show that, if this study had been considered and executed by the different stakeholders during that period, then the implementation of CCS in the new licensed power plants from 2010 and onwards could reduce the use of lignite and imported hard coal power production in a much smoother and beneficial way in the next years, and until the present, without compromising any major power plants. This implementation would also make the transition to a lignite free economy in Greece much faster and better, while complimenting the EU regulations and also enhancing the possible greater use of alternative energy sources in the green energy mixture.


Sign in / Sign up

Export Citation Format

Share Document