scholarly journals Modeling and Optimization of Integrated Energy System for Renewable Power Penetration considering Carbon and Pollutant Reduction Systems

2021 ◽  
Vol 9 ◽  
Author(s):  
Guangming Zhang ◽  
Peiran Xie ◽  
Shuhao Huang ◽  
Zhenyu Chen ◽  
Ming Du ◽  
...  

To address climate change and environmental pollution, an increasing number of renewable energy source generations are connected to the grid; meanwhile, the need for carbon capture and pollutant reduction for traditional energy has increased in urgency. In this study, the dispatch problem for an integrated energy system (IES) is expanded considering renewable penetration, carbon capture, and pollutant reduction. First of all, detailed models of carbon and pollutants reductions systems are set up. Specifically, the carbon capture system’s characteristics, which contribute more flexibility for the conventional power plants, are clarified. In addition, the treatment process of pollutants containing SO2 and NOx is elaborated. Moreover, the structure of an evolutionary IES containing pollutants treatment, battery and thermal energy storage, and carbon capture and storage systems are put forward. On this basis, the model of IES for renewable energy penetration and environmental protection considering the constraint of pollutant ultra-low emissions is set up. Finally, the simulation results show that the proposed approach can improve renewable energy penetration and restrain carbon and pollutants emissions.

Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2319 ◽  
Author(s):  
Peter Viebahn ◽  
Emile Chappin

For many years, carbon capture and storage (CCS) has been discussed as a technology that may make a significant contribution to achieving major reductions in greenhouse gas emissions. At present, however, only two large-scale power plants capture a total of 2.4 Mt CO2/a. Several reasons are identified for this mismatch between expectations and realised deployment. Applying bibliographic coupling, the research front of CCS, understood to be published peer-reviewed papers, is explored to scrutinise whether the current research is sufficient to meet these problems. The analysis reveals that research is dominated by technical research (69%). Only 31% of papers address non-technical issues, particularly exploring public perception, policy, and regulation, providing a broader view on CCS implementation on the regional or national level, or using assessment frameworks. This shows that the research is advancing and attempting to meet the outlined problems, which are mainly non-technology related. In addition to strengthening this research, the proportion of papers that adopt a holistic approach may be increased in a bid to meet the challenges involved in transforming a complex energy system. It may also be useful to include a broad variety of stakeholders in research so as to provide a more resilient development of CCS deployment strategies.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 262
Author(s):  
Mitavachan Hiremath ◽  
Peter Viebahn ◽  
Sascha Samadi

Roadmaps for India’s energy future foresee that coal power will continue to play a considerable role until the middle of the 21st century. Among other options, carbon capture and storage (CCS) is being considered as a potential technology for decarbonising the power sector. Consequently, it is important to quantify the relative benefits and trade-offs of coal-CCS in comparison to its competing renewable power sources from multiple sustainability perspectives. In this paper, we assess coal-CCS pathways in India up to 2050 and compare coal-CCS with conventional coal, solar PV and wind power sources through an integrated assessment approach coupled with a nexus perspective (energy-cost-climate-water nexus). Our levelized costs assessment reveals that coal-CCS is expensive and significant cost reductions would be needed for CCS to compete in the Indian power market. In addition, although carbon pricing could make coal-CCS competitive in relation to conventional coal power plants, it cannot influence the lack of competitiveness of coal-CCS with respect to renewables. From a climate perspective, CCS can significantly reduce the life cycle GHG emissions of conventional coal power plants, but renewables are better positioned than coal-CCS if the goal is ambitious climate change mitigation. Our water footprint assessment reveals that coal-CCS consumes an enormous volume of water resources in comparison to conventional coal and, in particular, to renewables. To conclude, our findings highlight that coal-CCS not only suffers from typical new technology development related challenges—such as a lack of technical potential assessments and necessary support infrastructure, and high costs—but also from severe resource constraints (especially water) in an era of global warming and the competition from outperforming renewable power sources. Our study, therefore, adds a considerable level of techno-economic and environmental nexus specificity to the current debate about coal-based large-scale CCS and the low carbon energy transition in emerging and developing economies in the Global South.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1913
Author(s):  
Christos S. Ioakimidis ◽  
Hana Gerbelova ◽  
Ali Bagheri ◽  
Sesil Koutra ◽  
Nikolaos Koukouzas

This paper presents a roadmap performed in 2010 as part of a European project for the modelling of carbon capture and storage technology, and various scenarios with different taxations and permit prices for the CO2 emissions considering the Greek national plans, then the gradual decommissioning of various lignite or other units of electricity power plants. In addition, this study presents a first check, 10 years after its writing, of the current situation of the Greek energy system, regarding the correspondence of the roadmap designed in 2010 to what has been finally executed during this period, including the possibility of other energy sources complimenting or substituting the national strategic energy plans. For this purpose, the integrated MARKAL-EFOM system (TIMES) was employed to model the Greek energy system and evaluate its development over time, until 2040, by analyzing three different scenarios with respect to taxation and permit prices for carbon emissions. The results obtained show that, if this study had been considered and executed by the different stakeholders during that period, then the implementation of CCS in the new licensed power plants from 2010 and onwards could reduce the use of lignite and imported hard coal power production in a much smoother and beneficial way in the next years, and until the present, without compromising any major power plants. This implementation would also make the transition to a lignite free economy in Greece much faster and better, while complimenting the EU regulations and also enhancing the possible greater use of alternative energy sources in the green energy mixture.


Author(s):  
Roger H Bezdek ◽  

This paper assesses the relative economic and jobs benefits of retrofitting an 847 MW USA coal power plant with carbon capture, utilization, and storage (CCUS) technology compared to replacing the plant with renewable (RE) energy and battery storage. The research had two major objectives: 1) Estimate the relative environmental, economic, and jobs impacts of CCUS retrofit of the coal plant compared to its replacement by the RE scenario; 2) develop metrics that can be used to compare the jobs impacts of coal fueled power plants to those of renewable energy. The hypotheses tested are: 1) The RE option will reduce CO2 emissions more than the CCUS option. We reject this hypothesis: We found that the CCUS option will reduce CO2 emissions more than the RE option. 2) The RE option will generate greater economic benefits than the CCUS option. We reject this hypothesis: We found that the CCUS option will create greater economic and jobs benefits than the RE option. 3) The RE option will create more jobs per MW than the CCUS option. We reject this hypothesis: We found that the CCUS option will create more jobs per MW more than the RE option. We discuss the implications of these findings.


2017 ◽  
Vol 1 ◽  
pp. 2BIOTO ◽  
Author(s):  
Patrick Eser ◽  
Ndaona Chokani ◽  
Reza S. Abhari

AbstractThe operation of conventional power plants in the 2030 high-renewable energy system of central Europe with high penetration of renewables is simulated in this work. Novel insights are gained in this work, since the generation, transmission and demand models have high geographic resolution, down to scale of individual units, with hourly temporal resolution. It is shown that the increases in the partload efficiency that optimize gas power plants’ financial performance in 2030 are highly dependent on the variability in power production of renewable power plants that are in close proximity to the gas power plants. While coal power plants are also cycled more, an increased baseload efficiency is more beneficial for their financial viability. Thus, there is a need for OEMs to offer a wide range of technology solutions to cover all customers’ needs in electricity markets with high penetrations of renewables. Therefore there is an increased investment risk for OEMs as they strive to match their customers’ future needs.


Author(s):  
Andrea Ciani ◽  
John P. Wood ◽  
Anders Wickström ◽  
Geir J. Rørtveit ◽  
Rosetta Steeneveldt ◽  
...  

Abstract Today gas turbines and combined cycle power plants play an important role in power generation and in the light of increasing energy demand, their role is expected to grow alongside renewables. In addition, the volatility of renewables in generating and dispatching power entails a new focus on electricity security. This reinforces the importance of gas turbines in guaranteeing grid reliability by compensating for the intermittency of renewables. In order to achieve the Paris Agreement’s goals, power generation must be decarbonized. This is where hydrogen produced from renewables or with CCS (Carbon Capture and Storage) comes into play, allowing totally CO2-free combustion. Hydrogen features the unique capability to store energy for medium to long storage cycles and hence could be used to alleviate seasonal variations of renewable power generation. The importance of hydrogen for future power generation is expected to increase due to several factors: the push for CO2-free energy production is calling for various options, all resulting in the necessity of a broader fuel flexibility, in particular accommodating hydrogen as a future fuel feeding gas turbines and combined cycle power plants. Hydrogen from methane reforming is pursued, with particular interest within energy scenarios linked with carbon capture and storage, while the increased share of renewables requires the storage of energy for which hydrogen is the best candidate. Compared to natural gas the main challenge of hydrogen combustion is its increased reactivity resulting in a decrease of engine performance for conventional premix combustion systems. The sequential combustion technology used within Ansaldo Energia’s GT36 and GT26 gas turbines provides for extra freedom in optimizing the operation concept. This sequential combustion technology enables low emission combustion at high temperatures with particularly high fuel flexibility thanks to the complementarity between its first stage, stabilized by flame propagation and its second (sequential) stage, stabilized by auto-ignition. With this concept, gas turbines are envisaged to be able to provide reliable, dispatchable, CO2-free electric power. In this paper, an overview of hydrogen production (grey, blue, and green hydrogen), transport and storage are presented targeting a CO2-free energy system based on gas turbines. A detailed description of the test infrastructure, handling of highly reactive fuels is given with specific aspects of the large amounts of hydrogen used for the full engine pressure tests. Based on the results discussed at last year’s Turbo Expo (Bothien et al. GT2019-90798), further high pressure test results are reported, demonstrating how sequential combustion with novel operational concepts is able to achieve the lowest emissions, highest fuel and operational flexibility, for very high combustor exit temperatures (H-class) with unprecedented hydrogen contents.


Sign in / Sign up

Export Citation Format

Share Document