Flow investigation of circular cylinder having different cavities in shallow water

2021 ◽  
Vol 90 ◽  
pp. 108832
Author(s):  
Atakan Tantekin ◽  
N. Filiz Tumen Ozdil ◽  
Hüseyin Akilli ◽  
Meltem Caliskan
Author(s):  
Göktürk Memduh Özkan ◽  
Hüseyin Akıllı

The characteristics of the flow around a 50mm circular cylinder surrounded by a permeable outer cylinder were investigated by Particle Image Velocimetry (PIV) and flow visualization techniques in order to control the unsteady flow structure downstream of the cylinder in shallow water. The effect of outer permeable cylinder with a porosity of β = 0.4 on the flow control was studied using five different diameters; D = 60, 70, 80, 90, 100mm. Depth-averaged free stream velocity was kept constant as U = 170mm/s corresponding to a Reynolds number of Re = 8500 and the water height was adjusted to hw = 25mm throughout the study. The results clearly showed that the outer permeable cylinder significantly affects the flow structure of the inner cylinder. It was found that by the existence of outer cylinder, the frequency of unsteady vortex shedding is reduced, vortex formation region is elongated and fluctuations are attenuated which are good indications of effective flow control. Owing to the results, optimum parameters were defined and suggested for the suppression of vortex-induced vibrations on bluff bodies.


2016 ◽  
Vol 79 ◽  
pp. 101-110 ◽  
Author(s):  
T. Durhasan ◽  
M.M. Aksoy ◽  
E. Pinar ◽  
G.M. Ozkan ◽  
H. Akilli ◽  
...  

Author(s):  
Tahir Durhasan ◽  
Engin Pınar ◽  
Muhammed M. Aksoy ◽  
Göktürk M. Özkan ◽  
Hüseyin Akıllı ◽  
...  

In the present study, it was aimed to suppress the vortex shedding occurred in the near wake of a circular cylinder (inner cylinder) by perforated cylinder (outer cylinder) in shallow water flow. The inner cylinder (Di) and outer cylinder (Do) have fixed diameters, such as Di = 50 mm and Do = 100 mm, respectively. The effect of porosity, β, was examined using four different porosity ratios, 0.3, 0.5, 0.6 and 0.8. In order to investigate the effect of arc angle of outer cylinder, α, four different arc angles, α = 360°, 180°, 150° and 120° were used. The experiments were implemented in a recirculating water channel using the particle image velocimetry, PIV technique. The depth-averaged free-stream velocity was kept constant as U∞ = 100 mm/s which corresponded to a Reynolds number of Re = 5000 based on the inner cylinder diameter. The results demonstrated that the suppression of vortex shedding is substantially achieved by perforated outer cylinder for arc angle of α = 360° at β = 0.6. Turbulence Kinetic Energy statistics show that porosity, β, is highly effective on the flow structure. In comparison with the values obtained from the case of the bare cylinder, at porosity β = 0.6, turbulence characteristics are reduced by %80. Also, the point, which the values of maximum TKE, shift to a farther downstream compared to the case of bare cylinder.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Huseyin Akilli ◽  
Cuma Karakus ◽  
Atakan Akar ◽  
Besir Sahin ◽  
N. Filiz Tumen

In the present work, passive control of vortex shedding behind a circular cylinder by splitter plates of various lengths attached on the cylinder base is experimentally investigated in shallow water flow. Detailed measurements of instantaneous and time-averaged flow data of wake flow region at a Reynolds number of Re=6300 were obtained by particle image velocimetry technique. The length of the splitter plate was varied from L∕D=0.2 to L∕D=2.4 in order to see the effect of the splitter plate length on the flow characteristics. Instantaneous and time-averaged flow data clearly indicate that the length of the splitter plate has a substantial effect on the flow characteristics. The flow characteristics in the wake region of the circular cylinder sharply change up to the splitter plate length of L∕D=1.0. Above this plate length, small changes occur in the flow characteristics.


2014 ◽  
Vol 501-504 ◽  
pp. 2060-2064
Author(s):  
Hua Huang ◽  
Rui Zhi Chen ◽  
Qi Li ◽  
Jie Min Zhang ◽  
Lin Guo

The influence of the porosity of the structure on the shallow water wave-Induced seepage force on the bottom of porous vertical circular cylinder resting on porous elastic seabed has been investigated. Based on the shallow water diffracted wave theory and Biot consolidation theory on wave-induced seepage pressure, the analytical solutions to first order cnoidal wave diffraction by porous vertical circular cylinder and wave-induced seepage pressure are obtained by the eigenfunction expansion approach. Numerical results show that cnoidal wave-induced uplift and moment may have same order of magnitude as the horizontal cnoidal wave force and moment , and the body porosity of the structure may lead to a reduction both in direct cnoidal wave forces and in the cnoidal wave induced seepage moment. Compared with Airy wave theory, in certain shallow water conditions, the shallow water wave theory can more effectively reflect wave nonlinearity effect in wave load prediction.


2005 ◽  
Vol 173 (4S) ◽  
pp. 393-393
Author(s):  
Bunzo Kashiwagi ◽  
Yasuhiro Shibata ◽  
Kazunari Ohki ◽  
Seiji Arai ◽  
Seijiro Honma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document