The Passive Control of Unsteady Flow Structure Downstream of a Circular Cylinder in Shallow Water

Author(s):  
Tahir Durhasan ◽  
Engin Pınar ◽  
Muhammed M. Aksoy ◽  
Göktürk M. Özkan ◽  
Hüseyin Akıllı ◽  
...  

In the present study, it was aimed to suppress the vortex shedding occurred in the near wake of a circular cylinder (inner cylinder) by perforated cylinder (outer cylinder) in shallow water flow. The inner cylinder (Di) and outer cylinder (Do) have fixed diameters, such as Di = 50 mm and Do = 100 mm, respectively. The effect of porosity, β, was examined using four different porosity ratios, 0.3, 0.5, 0.6 and 0.8. In order to investigate the effect of arc angle of outer cylinder, α, four different arc angles, α = 360°, 180°, 150° and 120° were used. The experiments were implemented in a recirculating water channel using the particle image velocimetry, PIV technique. The depth-averaged free-stream velocity was kept constant as U∞ = 100 mm/s which corresponded to a Reynolds number of Re = 5000 based on the inner cylinder diameter. The results demonstrated that the suppression of vortex shedding is substantially achieved by perforated outer cylinder for arc angle of α = 360° at β = 0.6. Turbulence Kinetic Energy statistics show that porosity, β, is highly effective on the flow structure. In comparison with the values obtained from the case of the bare cylinder, at porosity β = 0.6, turbulence characteristics are reduced by %80. Also, the point, which the values of maximum TKE, shift to a farther downstream compared to the case of bare cylinder.

Author(s):  
Göktürk Memduh Özkan ◽  
Hüseyin Akıllı

The characteristics of the flow around a 50mm circular cylinder surrounded by a permeable outer cylinder were investigated by Particle Image Velocimetry (PIV) and flow visualization techniques in order to control the unsteady flow structure downstream of the cylinder in shallow water. The effect of outer permeable cylinder with a porosity of β = 0.4 on the flow control was studied using five different diameters; D = 60, 70, 80, 90, 100mm. Depth-averaged free stream velocity was kept constant as U = 170mm/s corresponding to a Reynolds number of Re = 8500 and the water height was adjusted to hw = 25mm throughout the study. The results clearly showed that the outer permeable cylinder significantly affects the flow structure of the inner cylinder. It was found that by the existence of outer cylinder, the frequency of unsteady vortex shedding is reduced, vortex formation region is elongated and fluctuations are attenuated which are good indications of effective flow control. Owing to the results, optimum parameters were defined and suggested for the suppression of vortex-induced vibrations on bluff bodies.


2018 ◽  
Vol 1 (1) ◽  
pp. 761-771
Author(s):  
Engin Pinar ◽  
Arda Yeniçun ◽  
Göktürk Memduh Özkan ◽  
Tahir Durhasan ◽  
Umutcan Olmus ◽  
...  

The purpose of this work was to control undesired structure and vibrations caused from vortex shedding by controlling the flow downstream of the cylinder. The porosities of the outer cylinder and the splitter plate used for this purpose are available. The other parameter was plate angle based on the flow direction as a reference. The parameter expressed as porosities, ß was chosen to have a %70 openness for the outer cylinder (ß = 0.7) and was kept constant throughout all experiments. On the other hand, two different porosities were used for the splitter plate. For the first plate, there was no hole on the plate which we call ß = 0 or solid plate. For the second plate, it has ß = 0.7 porosity. ß = 0.7 porosity was also the value chosen for the outer cylinder. The range of the splitter plate angle was selected within 60o? ? ?180o with an increment of 30o. The results were extracted using two different methods. The first was the dye visualization experiment and the second is the PIV (Particle Image Velocimetry) measurement. As a result, it was observed that independently from the outer cylinder effect, the plate porosity and plate angle are effective on the level of turbulence and the flow structure in the annular region.


1990 ◽  
Vol 112 (2) ◽  
pp. 243-245 ◽  
Author(s):  
D. E. Paxson ◽  
R. E. Mayle

Velocity measurements in the laminar boundary layer around the forward portion of a circular cylinder are presented. These results are compared to Blasius’ theory for laminar flow around a cylinder using a free-stream velocity distribution obtained from static pressure measurements on the cylinder. Even though the flow is periodically unsteady as a result of vortex shedding from the cylinder, it is found that the agreement is excellent.


2013 ◽  
Vol 390 ◽  
pp. 675-679
Author(s):  
Iván Guillén ◽  
Cesar Treviño ◽  
Lorenzo Martínez-Suástegui

Particle image velocimetry (PIV) measurements are carried out in an experimental investigation of transient laminar opposing mixed convection to assess the thermal effects on the wake of an isothermal circular cylinder placed horizontally and confined inside a vertical closed-loop downward rectangular water channel. The buoyancy effect on the flow distributions are revealed for flow conditions with Reynolds number based on cylinder diameter of Re=170, blockage ratio D/H=0.287, aspect ratio, L/D=6.97 and values of the buoyancy parameter (Richardson number) of Ri=0 and 1. Results show that the wake closure length and Strouhal number slightly decrease for increasing Richardson number.


2018 ◽  
Vol 847 ◽  
pp. 93-118 ◽  
Author(s):  
D. Vicente-Ludlam ◽  
A. Barrero-Gil ◽  
A. Velazquez

The effect of imposed rotation on a slender elastically mounted circular cylinder free to oscillate transversely to the incident flow has been studied experimentally in a free-surface water channel. Rotation rate and direction are imposed to be proportional to either the cylinder’s transverse displacement or the cylinder’s transverse velocity to determine the effectiveness of these rotation laws to control the dynamics of the cylinder, either to reduce or to enhance oscillations. The former can be of interest for energy harvesting purposes whereas the latter can be useful to avoid unwanted oscillations. In all cases, non-dimensional mass and damping are fixed ($m^{\ast }=11.7$, $\unicode[STIX]{x1D701}=0.0043$) so the analysis is focused on the role of the rotation law and the reduced velocity. The Reynolds number based on the diameter of the cylinder ranges from 1500 to 10 000. Results are presented in terms of steady-state oscillation characterization (say, amplitude and frequency) and wake-pattern topology, which was obtained through digital particle image velocimetry. Both laws are able to either reduce or enhance oscillations, but they do it in a different way. A rotation law proportional to the cylinder’s displacement is more effective to enhance oscillations. For high enough actuation, a galloping-type response has been found, with a persistent growth of the amplitude of oscillations with the reduced velocity that shows a new desynchronized mode of vortex shedding. On the other hand, a rotation law proportional to the cylinder’s transverse velocity is more efficient to reduce oscillations. In this case only vortex-induced-type responses have been found. A quasi-steady theoretical model has been developed, which helps to explain why a galloping-type response may appear when rotation is proportional to cylinder displacement and is able to predict reasonably the amplitude of oscillations in those cases. The model also explains why a galloping-type response is not expected to occur when rotation is proportional to the cylinder’s velocity.


2018 ◽  
Vol 141 (6) ◽  
Author(s):  
Eshodarar Manickam Sureshkumar ◽  
Maziar Arjomandi ◽  
Bassam B. Dally ◽  
Benjamin S. Cazzolato ◽  
Mergen H. Ghayesh

Particle image velocimetry (PIV) of four cylinders with different cross sections were performed in a recirculating water channel at Reynolds numbers of 5000 and 10,000. The cylinders were split into two distinct categories; semicircular and convex-edged triangular (c-triangular) prisms which have a smooth diverging fore-face and a flat, backward facing step aft-face, and a trapezoid which has a flat fore face and a backward-facing step aft-face. The resulting streamwise and transverse velocity vectors (u and v, respectively) were analyzed to provide a qualitative comparison of the bluff body wakes to the circular cylinder, which is the standard upstream stationary body in wake-induced vibration (WIV) energy technology. The Reynolds stresses, turbulent kinetic energy (TKE), mean spanwise vorticity, and the energy in the fluctuating component of the wake were compared. The main findings are: (i) a convex fore-face and a backward-facing step aft face are more effective at converting the flow energy to temporal wake energy (+20%) compared to a circular cylinder, (ii) a trapezoid type shape is less effective at converting flow energy to temporal wake energy (−40%) compared to a circular cylinder, (iii) increasing Reynolds number reduces the efficiency of conversion of upstream flow energy to downstream transverse temporal energy. Utilizing stationary upstream bodies such as the semicircle and the c-triangle can result in concentrating more energy in the fluctuating components for the downstream transversely vibrating bluff body in a WIV system, and hence can realize in more efficient WIV technology.


2007 ◽  
Vol 129 (9) ◽  
pp. 1203-1211 ◽  
Author(s):  
L. Labraga ◽  
G. Kahissim ◽  
L. Keirsbulck ◽  
F. Beaubert

The flow past a rotating cylinder placed within a uniform stream is investigated at Reynolds numbers ranging from 8500 to 17,000 to 34,000. The dimensionless rotation rate α (ratio of the cylinder peripheral speed to the free-stream velocity) varies from 0 to 7. The experimental investigation is based on laser-Doppler anemometry measurements and particle-image velocimetry (PIV) within a water channel. The analysis of the experimental results mainly concerns the location of the separation points as defined by various criteria. It is found that the criterion suggested by Moore, Rott and Sears (MRS) is met in the case of the downstream-moving walls. Moreover, this study shows that sufficient information was obtained to confirm that the MRS criterion is still valid even in the case of the upstream-moving walls. This is confirmed by the behavior of the vertical velocity component educed from the averaged two-dimensional flow field obtained by PIV measurements.


Author(s):  
Hongrae Park ◽  
Michael M. Bernitsas ◽  
R. Ajith Kumar

A passive control means to suppress flow-induced motions (FIM) of a rigid circular cylinder in the TrSL3, high-lift, flow regime is formulated and tested experimentally. The developed method uses passive turbulence control (PTC) consisting of selectively located roughness on the cylinder surface with thickness about equal to the boundary layer thickness. The map of “PTC-to-FIM,” developed in previous work, revealed robust zones of weak suppression, strong suppression, hard galloping, and soft galloping. PTC has been used successfully to enhance FIM for hydrokinetic energy harnessing using the VIVACE Converter. PTC also revealed the potential to suppress FIM to various levels. The map is flow-direction dependent. In this paper, the “PTC-to-FIM” map is used to guide development of FIM suppression devices that are flow-direction independent and hardly affect cylinder geometry. Experiments are conducted in the Low Turbulence Free Surface Water Channel of the University of Michigan on a rigid, horizontal, circular cylinder, suspended on springs. Amplitude and frequency measurements and broad field-of-view visualization reveal complex flow structures and their relation to suppression. Several PTC designs are tested to understand the effect of PTC roughness, location, coverage, and configuration. Gradual modification of PTC parameters, leads to improved suppression and evolution of a design reducing the VIV synchronization range. Over a wide range of high reduced velocities, VIV is fully suppressed. The maximum amplitude occurring near the system’s natural frequency is reduced by about 63% compared to the maximum amplitude of the smooth cylinder.


1983 ◽  
Vol 126 ◽  
pp. 147-165 ◽  
Author(s):  
Hiroshi Sakamoto ◽  
Mikio Arie

Measurements of the vortex-shedding frequency behind a vertical rectangular prism and a vertical circular cylinder attached to a plane wall are correlated with the characteristics of the smooth-wall turbulent boundary layer in which they are immersed. Experimental data were collected to investigate the effects of (i) the aspect ratio of these bodies and (ii) the boundary-layer characteristics on the vortex-shedding frequency. The Strouhal number for the rectangular prism and the circular cylinder, defined by S = fcw/U0 and fcd/U0 respectively, was found to be expressed by a power function of the aspect ratio h/w (or h/d). Here fc is the vortex-shedding frequency, U0 is the free-stream velocity, h is the height, w is the width and d is the diameter. As the aspect ratio is reduced, the type of vortex shedding behind each of the two bodies was found to change from the Karman-type vortex to the arch-type vortex at the aspect ratio of 2·0 for the rectangular prism and 2·5 for the circular cylinder.


Sign in / Sign up

Export Citation Format

Share Document