Suppression of Vortex Shedding Downstream of a Circular Cylinder Using Permeable Cylinders in Shallow Water

Author(s):  
Göktürk Memduh Özkan ◽  
Hüseyin Akıllı

The characteristics of the flow around a 50mm circular cylinder surrounded by a permeable outer cylinder were investigated by Particle Image Velocimetry (PIV) and flow visualization techniques in order to control the unsteady flow structure downstream of the cylinder in shallow water. The effect of outer permeable cylinder with a porosity of β = 0.4 on the flow control was studied using five different diameters; D = 60, 70, 80, 90, 100mm. Depth-averaged free stream velocity was kept constant as U = 170mm/s corresponding to a Reynolds number of Re = 8500 and the water height was adjusted to hw = 25mm throughout the study. The results clearly showed that the outer permeable cylinder significantly affects the flow structure of the inner cylinder. It was found that by the existence of outer cylinder, the frequency of unsteady vortex shedding is reduced, vortex formation region is elongated and fluctuations are attenuated which are good indications of effective flow control. Owing to the results, optimum parameters were defined and suggested for the suppression of vortex-induced vibrations on bluff bodies.

Author(s):  
Tahir Durhasan ◽  
Engin Pınar ◽  
Muhammed M. Aksoy ◽  
Göktürk M. Özkan ◽  
Hüseyin Akıllı ◽  
...  

In the present study, it was aimed to suppress the vortex shedding occurred in the near wake of a circular cylinder (inner cylinder) by perforated cylinder (outer cylinder) in shallow water flow. The inner cylinder (Di) and outer cylinder (Do) have fixed diameters, such as Di = 50 mm and Do = 100 mm, respectively. The effect of porosity, β, was examined using four different porosity ratios, 0.3, 0.5, 0.6 and 0.8. In order to investigate the effect of arc angle of outer cylinder, α, four different arc angles, α = 360°, 180°, 150° and 120° were used. The experiments were implemented in a recirculating water channel using the particle image velocimetry, PIV technique. The depth-averaged free-stream velocity was kept constant as U∞ = 100 mm/s which corresponded to a Reynolds number of Re = 5000 based on the inner cylinder diameter. The results demonstrated that the suppression of vortex shedding is substantially achieved by perforated outer cylinder for arc angle of α = 360° at β = 0.6. Turbulence Kinetic Energy statistics show that porosity, β, is highly effective on the flow structure. In comparison with the values obtained from the case of the bare cylinder, at porosity β = 0.6, turbulence characteristics are reduced by %80. Also, the point, which the values of maximum TKE, shift to a farther downstream compared to the case of bare cylinder.


2019 ◽  
Vol 8 (4) ◽  
pp. 6879-6885

Add-on devices are widely used as one of the means of suppressing vortex induced vibrations from bluff bodies. The present study numerically investigates flow over a circular cylinder attached by an axial slat. The axial slat were of uniform and non-uniform openings of 67% and 44% porosity. The governing equation was solved using viscous-laminar model at Reynolds number, Re=300. It was found that the presence of the axial slats significantly suppressed vortex shedding behind the circular cylinder. The non-uniform slats showed longer vortex formation length with lower drag, in comparison to that of the uniform slats. In addition, the slats with 67% porosity of both uniform and non-uniform openings suppressed vortex better than that of 44% porosity slats, indicated by the longer vortex formation length and weaker intensity of vortices.


Author(s):  
Gokturk Memduh Ozkan ◽  
Huseyin Akilli

The flow downstream of a plain cylinder with attached permeable plates having various porosity ratios was investigated experimentally using both Particle Image Velocimetry (PIV) and dye visualization techniques to control the vortex shedding around the circular cylinder. The diameter of the cylinder and length to diameter ratio of the plate were kept constant as d= 50 mm and L/d=1.0, respectively. The porosity ratio, β which can be defined as the ratio of open area to the whole body surface area was taken as β=0.4, 0.5, 0.6, 0.7 and 0.8 (permeable plates). The study was performed considering deep water flow conditions and depth-averaged free stream velocity was taken constant as U = 95.2mm/s which corresponded to a Reynolds number of Red = 5000 based on the cylinder diameter. The results of a plain cylinder were compared with the results of cylinder with permeable plates in order to understand the control effect. Both qualitative and quantitative results revealed that the plates are effective on the unsteady flow structure downstream of the cylinder, i.e. the vortex formation length was increased, turbulent statistics was reduced and both width and length of the wake were changed by usage of permeable plates attached around the separation point of the cylinder.


CFD letters ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 51-68
Author(s):  
Nurul Azihan Ramli ◽  
Azlin Mohd Azmi ◽  
Ahmad Hussein Abdul Hamid ◽  
Zainal Abidin Kamarul Baharin ◽  
Tongming Zhou

Flow over bluff bodies produces vortex shedding in their wake regions, leading to structural failure from the flow-induced forces. In this study, a passive flow control method was explored to suppress the vortex shedding from a circular cylinder that causes many problems in engineering applications. Perforated shrouds were used to control the vortex shedding of a circular cylinder at Reynolds number, Re = 200. The shrouds were of non-uniform and uniform holes with 67% porosity. The spacing gap ratio between the shroud and the cylinder was set at 1.2, 1.5, 2, and 2.2. The analysis was conducted using ANSYS Fluent using a viscous laminar model. The outcomes of the simulation of the base case were validated with existing studies. The drag coefficient, Cd, lift coefficient, Cl and the Strouhal number, St, as well as vorticity contours, velocity contours, and pressure contours were examined. Vortex shedding behind the shrouded cylinders was observed to be suppressed and delayed farther downstream with increasing gap ratio. The effect was significant for spacing ratio greater than 2.0. The effect of hole types: uniform and non-uniform holes, was also effective at these spacing ratios for the chosen Reynolds number of 200. Specifically, a spacing ratio of 1.2 enhanced further the vortex intensity and should be avoided.


2005 ◽  
Vol 128 (3) ◽  
pp. 528-535 ◽  
Author(s):  
J. P. Gostelow ◽  
M. F. Platzer ◽  
W. E. Carscallen

This paper demonstrates similarities between the vortex shedding from blunt trailing-edge transonic turbine nozzle blades and from oscillating airfoils and bluff bodies. Under subsonic conditions the turbine nozzle cascade shed wake vortices in a conventional von Kármán vortex street. This was linked with a depressed base pressure and associated energy separation in the wake. Under transonic conditions a variety of different shedding configurations was observed with vortices shedding and pairing in several different ways. Similarities are addressed between the observed structures and those from vortex shedding in some other physical situations, such as the vortex wakes shed from cylinders and airfoils in sinusoidal heaving motion in low-speed flow. The established field of vortex-induced vibration has provided a developed classification scheme for the phenomena observed. The paper has brought together three previously independent fields of investigation and, by showing that the three are essentially related, has provided the basis for a new synthesis.


1988 ◽  
Vol 190 ◽  
pp. 491-512 ◽  
Author(s):  
M. F. Unal ◽  
D. Rockwell

Vortex shedding from a circular cylinder is examined over a tenfold range of Reynolds number, 440 ≤ Re ≤ 5040. The shear layer separating from the cylinder shows, to varying degrees, an exponential variation of fluctuating kinetic energy with distance downstream of the cylinder. The characteristics of this unsteady shear layer are interpreted within the context of an absolute instability of the near wake. At the trailing-end of the cylinder, the fluctuation amplitude of the instability correlates well with previously measured values of mean base pressure. Moreover, this amplitude follows the visualized vortex formation length as Reynolds number varies. There is a drastic decrease in this near-wake fluctuation amplitude in the lower range of Reynolds number and a rapid increase at higher Reynolds number. These trends are addressed relative to the present, as well as previous, observations.


1982 ◽  
Vol 116 ◽  
pp. 77-90 ◽  
Author(s):  
A. E. Perry ◽  
M. S. Chong ◽  
T. T. Lim

Using a variety of flow-visualization techniques, the flow behind a circular cylinder has been studied. The results obtained have provided a new insight into the vortex-shedding process. Using time-exposure photography of the motion of aluminium particles, a sequence of instantaneous streamline patterns of the flow behind a cylinder has been obtained. These streamline patterns show that during the starting flow the cavity behind the cylinder is closed. However, once the vortex-shedding process begins, this so-called ‘closed’ cavity becomes open, and instantaneous ‘alleyways’ of fluid are formed which penetrate the cavity. In addition, dye experiments also show how layers of dye and hence vorticity are convected into the cavity behind the cylinder, and how they are eventually squeezed out.


1990 ◽  
Vol 112 (2) ◽  
pp. 243-245 ◽  
Author(s):  
D. E. Paxson ◽  
R. E. Mayle

Velocity measurements in the laminar boundary layer around the forward portion of a circular cylinder are presented. These results are compared to Blasius’ theory for laminar flow around a cylinder using a free-stream velocity distribution obtained from static pressure measurements on the cylinder. Even though the flow is periodically unsteady as a result of vortex shedding from the cylinder, it is found that the agreement is excellent.


2017 ◽  
Vol 30 (1) ◽  
pp. 04016063 ◽  
Author(s):  
Wen-Li Chen ◽  
Xiangjun Wang ◽  
Feng Xu ◽  
Hui Li ◽  
Hui Hu

Sign in / Sign up

Export Citation Format

Share Document