Particle Swarm Optimization-based algorithms for solving inverse heat conduction problems of estimating surface heat flux

2012 ◽  
Vol 55 (7-8) ◽  
pp. 2062-2068 ◽  
Author(s):  
Fung-Bao Liu
Author(s):  
Obinna Uyanna ◽  
Hamidreza Najafi

Abstract Developing accurate and efficient solutions for inverse heat conduction problems allows advancements in the heat flux measurement techniques for many applications. In the present paper, a one-dimensional medium with a moving boundary is considered. It is assumed that two thermocouples are used to measure temperature at two locations within the medium while the front boundary is moving towards the back surface. Determining surface heat flux using measured temperature data is an inverse heat conduction problem. A filter based Tikhonov regularization method is used to develop a solution for this problem. Filter coefficients are calculated for various thicknesses of the medium. It is demonstrated that the filter coefficients can be interpolated to calculate the appropriate values for each thickness while it is continuously moving at a known rate. The use of filter method allows near real-time heat flux estimation. The developed solution is validated through several numerical test cases including a test case for a moving boundary in a medium modeled in COMSOL. It is shown that the proposed solution can effectively estimate the surface heat flux on the moving boundary in a near real-time fashion.


1992 ◽  
Vol 114 (3) ◽  
pp. 553-557 ◽  
Author(s):  
T. R. Hsu ◽  
N. S. Sun ◽  
G. G. Chen ◽  
Z. L. Gong

This paper presents a finite element algorithm for two-dimensional nonlinear inverse heat conduction analysis. The proposed method is capable of handling both unknown surface heat flux and unknown surface temperature of solids using temperature histories measured at a few discrete point. The proposed algorithms were used in the study of the thermofracture behavior of leaking pipelines with experimental verifications.


2000 ◽  
Author(s):  
M. Khairul Alam ◽  
Rex J. Kuriger ◽  
Rong Zhong

Abstract The quenching process is an important heat treatment method used to improve material properties. However, the heat transfer during quenching is particularly difficult to analyze and predict. To collect temperature data, quench probes have been used in controlled quenching experiments. The process of determination of the heat flux at the surface from the measured temperature data is the Inverse Heat Conduction Problem (IHCP), which is extremely sensitive to measurement errors. This paper reports on an experimental and theoretical study of quenching which is carried out to determine the surface heat flux history during a quenching process by an IHCP algorithm. The inverse heat conduction algorithm is applied to experimental data from a quenching experiment. The surface heat flux is then calculated, and the theoretical curve is compared with experimental results.


Sign in / Sign up

Export Citation Format

Share Document