Finite Element Formulation for Two-Dimensional Inverse Heat Conduction Analysis

1992 ◽  
Vol 114 (3) ◽  
pp. 553-557 ◽  
Author(s):  
T. R. Hsu ◽  
N. S. Sun ◽  
G. G. Chen ◽  
Z. L. Gong

This paper presents a finite element algorithm for two-dimensional nonlinear inverse heat conduction analysis. The proposed method is capable of handling both unknown surface heat flux and unknown surface temperature of solids using temperature histories measured at a few discrete point. The proposed algorithms were used in the study of the thermofracture behavior of leaking pipelines with experimental verifications.

1980 ◽  
Vol 102 (2) ◽  
pp. 168-176 ◽  
Author(s):  
B. R. Bass

The calculation of the surface temperature and surface heat flux from a measured temperature history at an interior point of a body is identified in the literature as the inverse heat conduction problem. This paper presents, to the author’s knowledge, the first application of a solution technique for the inverse problem that utilizes a finite element heat conduction model and Beck’s nonlinear estimation procedure. The technique is applicable to the one-dimensional nonlinear model with temperature-dependent thermophysical properties. The formulation is applied first to a numerical example with a known solution. The example treated is that of a periodic heat flux imposed on the surface of a rod. The computed surface heat flux is compared with the imposed heat flux to evaluate the performance of the technique in solving the inverse problem. Finally, the technique is applied to an experimentally determined temperature transient taken from an interior point of an electrically-heated composite rod. The results are compared with those obtained by applying a finite difference inverse technique to the same data.


Author(s):  
Obinna Uyanna ◽  
Hamidreza Najafi

Abstract Developing accurate and efficient solutions for inverse heat conduction problems allows advancements in the heat flux measurement techniques for many applications. In the present paper, a one-dimensional medium with a moving boundary is considered. It is assumed that two thermocouples are used to measure temperature at two locations within the medium while the front boundary is moving towards the back surface. Determining surface heat flux using measured temperature data is an inverse heat conduction problem. A filter based Tikhonov regularization method is used to develop a solution for this problem. Filter coefficients are calculated for various thicknesses of the medium. It is demonstrated that the filter coefficients can be interpolated to calculate the appropriate values for each thickness while it is continuously moving at a known rate. The use of filter method allows near real-time heat flux estimation. The developed solution is validated through several numerical test cases including a test case for a moving boundary in a medium modeled in COMSOL. It is shown that the proposed solution can effectively estimate the surface heat flux on the moving boundary in a near real-time fashion.


2000 ◽  
Author(s):  
M. Khairul Alam ◽  
Rex J. Kuriger ◽  
Rong Zhong

Abstract The quenching process is an important heat treatment method used to improve material properties. However, the heat transfer during quenching is particularly difficult to analyze and predict. To collect temperature data, quench probes have been used in controlled quenching experiments. The process of determination of the heat flux at the surface from the measured temperature data is the Inverse Heat Conduction Problem (IHCP), which is extremely sensitive to measurement errors. This paper reports on an experimental and theoretical study of quenching which is carried out to determine the surface heat flux history during a quenching process by an IHCP algorithm. The inverse heat conduction algorithm is applied to experimental data from a quenching experiment. The surface heat flux is then calculated, and the theoretical curve is compared with experimental results.


2013 ◽  
Vol 135 (12) ◽  
Author(s):  
Rakesh Kumar ◽  
Niranjan Sahoo

Coaxial thermocouple sensors are suitable for measuring highly transient surface heat fluxes because the response times of these sensors are very small (∼0.1 ms). These robust sensors have the flexibility of mounting them directly on the surface of any geometry. So, they have been routinely used in ground-based impulse facilities as temperature sensors where rapid changes in heat loads are expected on aerodynamic models. Subsequently, the surface heat fluxes are predicted from the transient temperatures by appropriate one-dimensional heat conduction modeling for semi-infinite body. In this backdrop, the purpose of this work is to design and fabricate K-type coaxial thermocouples in-house and calibrate them under similar nature of heat loads by using simple laboratory instruments. Here, two methods of dynamic calibration of coaxial thermocouples have been discussed, where the known step loads are applied through radiation and conduction modes of heat transfer. Using appropriate one dimensional heat conduction modeling, the surface heat fluxes are predicted from the measured temperature histories and subsequently compared with the input heat loads. The recovery of surface heat flux from laser based calibration experiment under-predicts by 4% from its true input heat load. Similarly, recovery of surface heat flux from the conduction mode calibration experiments under-predicts 6% from its true input value. Further, finite-element based numerical study is performed on the coaxial thermocouple model to obtain surface temperatures with same heat loads as used in the experiments. The recovery of surface temperatures from finite element simulation is achieved within an accuracy of ±0.3% from the experiment.


Author(s):  
Rakesh Kumar ◽  
Jayesh. P ◽  
Niranjan Sahoo

A procedure to solve inverse heat conduction problem (IHCP) is to derive surface heat flux and temperature from temperature change inside a solid. The method proves to be very useful and powerful when a direct measurement of surface heat flux and temperature is difficult, owing to several working condition. The literature reviewed here discussion one dimensional inverse heat conduction problem. Procedure, criteria, methods and important results of other investigation are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document