An efficient immersed boundary method for thermal flow problems with heat flux boundary conditions

Author(s):  
Weiwei Ren ◽  
Chang Shu ◽  
Wenming Yang
2016 ◽  
Vol 20 (5) ◽  
pp. 1210-1257 ◽  
Author(s):  
Yang Hu ◽  
Decai Li ◽  
Shi Shu ◽  
Xiaodong Niu

AbstractIn this paper, a diffuse-interface immersed boundary method (IBM) is proposed to treat three different thermal boundary conditions (Dirichlet, Neumann, Robin) in thermal flow problems. The novel IBM is implemented combining with the lattice Boltzmann method (LBM). The present algorithm enforces the three types of thermal boundary conditions at the boundary points. Concretely speaking, the IBM for the Dirichlet boundary condition is implemented using an iterative method, and its main feature is to accurately satisfy the given temperature on the boundary. The Neumann and Robin boundary conditions are implemented in IBM by distributing the jump of the heat flux on the boundary to surrounding Eulerian points, and the jump is obtained by applying the jump interface conditions in the normal and tangential directions. A simple analysis of the computational accuracy of IBM is developed. The analysis indicates that the Taylor-Green vortices problem which was used in many previous studies is not an appropriate accuracy test example. The capacity of the present thermal immersed boundary method is validated using four numerical experiments: (1) Natural convection in a cavity with a circular cylinder in the center; (2) Flows over a heated cylinder; (3) Natural convection in a concentric horizontal cylindrical annulus; (4) Sedimentation of a single isothermal cold particle in a vertical channel. The numerical results show good agreements with the data in the previous literatures.


2020 ◽  
Author(s):  
Junjie Wang ◽  
Xiangyu Gu ◽  
Jie Wu

Abstract This paper presents a robust sharp-interface immersed boundary method for simulating inviscid compressible flows over stationary and moving bodies. The flow field is governed by Euler equations, which are solved by using the open source library OpenFOAM. Discontinuities such as those introduced by shock waves are captured by using Kurganov and Tadmor divergence scheme. Wall-slip boundary conditions are enforced at the boundary of body through reconstructing flow variables at some ghost points. Their values are obtained indirectly by interpolating from their mirror points. A bilinear interpolation is employed to determine the variables at the mirror points from boundary conditions and flow conditions around the boundary. To validate the efficiency and accuracy of this method for simulation of high-speed inviscid compressible flows, four cases have been simulated as follows: supersonic flow over a 15 angle wedge, transonic flow past a stationary airfoil, a piston moving with supersonic velocity in a shock tube and a rigid circular cylinder lift-off from a flat surface triggered by a shock wave. Compared to the exact analytical solutions or the results in literature, good agreement can be achieved.


Sign in / Sign up

Export Citation Format

Share Document