The extended Graetz problem with specified heat flux for multicomponent fluids with Soret and Dufour effects

Author(s):  
Ilya I. Ryzhkov
2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Antonio Campo ◽  
Müslüm Arıcı

Abstract This study addresses the second Graetz problem with prescribed wall heat flux employing the transversal method of lines (TMOL), which deviates significantly from the traditional mathematical procedures employed in the past. The wall heat flux is customarily provided by electrical, radiative or solar heating in engineering applications. The TMOL transforms the governing two-dimensional energy equation with temperature-invariant thermo-physical properties into a sequence of adjoint ordinary differential equations of second order with the radial variable as the independent variable. The singular feature in those equations is the embedded axial variable interval. For the implementation of TMOL, a special computational domain consists in a condensed set of transversal lines displayed in the cross section of the tube. An approximate, semi-analytical temperature distribution is obtained with the solution of the first adjoint ordinary differential equation of second order, which is expressed in terms of the Kummer function of first kind M(a,b,c). From here, the approximate, semi-analytical wall and center temperature distributions exhibit excellent quality because the two compare favorably with the exact, analytical wall and center temperature distributions given by the classical Graetz infinite series. As a beneficial consequence, usage of the second adjoint ordinary differential equation of second order having more complex structure becomes unnecessary.


Author(s):  
M. Ramzan ◽  
M. Bilal ◽  
Jae Dong Chung

Abstract Three dimensional chemically reactive upper-convected Maxwell (UCM) fluid flow over a stretching surface is considered to examine Soret and Dufour effects on heat and mass transfer. During the formulation of energy equation, non-linear radiative heat flux is considered. Similarity transformation reduces the partial differential equations of flow problem into ordinary differential equations. These non-linear differential equations are then solved by using bvp4c MATLAB built-in function. A comparison of the present results with the published work is also included. Effects of some prominent parameters such as Soret and Dufour number, chemical reaction parameter, Prandtl number, Schmidt number and thermal radiation on velocity, temperature and concentration are discussed graphically and numerically. A comparison with the previously published work is also included in a tabular form.


Sign in / Sign up

Export Citation Format

Share Document