Corrigendum to “The influence of initial sizes and velocities of water droplets on transfer characteristics at high-temperature gas flow”. [International Journal of Heat and Mass Transfer 79 (2014) 838–845]

Author(s):  
Roman S. Volkov ◽  
Geniy V. Kuznetsov ◽  
Pavel A. Strizhak
2001 ◽  
Vol 17 (3) ◽  
pp. 245-250 ◽  
Author(s):  
A. F. Polyakov ◽  
D. L. Reviznikov ◽  
Shen Qing ◽  
Tang Jinrong ◽  
Wei Shuru

2014 ◽  
Vol 6 ◽  
pp. 865856 ◽  
Author(s):  
Roman S. Volkov ◽  
Olga V. Vysokomornaya ◽  
Genii V. Kuznetsov ◽  
Pavel A. Strizhak

The macroscopic regularities of heat and mass transfer and phase transitions during water droplets motion through high-temperature (more than 1000 K) gases have been investigated numerically and experimentally. Water droplet evaporation rates have been established. Gas and water vapors concentrations and also temperature values of gas-vapor mixture in small neighborhood and water droplet trace have been singled out. Possible mechanisms of droplet coagulation in high-temperature gas area have been determined. Experiments have been carried out with the optical methods of two-phase gas-vapor-droplet mixtures diagnostics (“Particle Image Velocimetry” and “Interferometric Particle Imaging”) usage to assess the adequateness of developed heat and mass transfer models and the results of numerical investigations. The good agreement of numerical and experimental investigation results due to integral characteristics of water droplet evaporation has been received.


2017 ◽  
Vol 205 ◽  
pp. 3898-3902 ◽  
Author(s):  
Yongzhang Cui ◽  
Guokai Zhang ◽  
Wei Liu ◽  
Zhen Li ◽  
Nan Jiang

Author(s):  
Monssif Najim ◽  
M'barek Feddaoui ◽  
Abderrahman Nait Alla ◽  
Adil Charef

This chapter presents a numerical investigation of heat and mass transfer characteristics during the evaporation of liquid films in vertical geometries. A two-phase model is developed to simulate laminar film evaporation into laminar gas flow. The liquid film evaporation is evaluated under adiabatic and heated wall conditions for both pure and binary liquid film. The model is based on a finite difference method to solve the governing equations of the two phases. The obtained results concerns two industrial processes. The first part of the chapter is devoted to the analysis of the thermal protection of vertical channel wall, while the second part is devoted to the desalination process by falling liquid film. The simulations results allowed the determination of the optimal operating conditions for both processes.


Sign in / Sign up

Export Citation Format

Share Document