scholarly journals Research on heat and mass transfer characteristics of flue gas flow drying biomass particles

2017 ◽  
Vol 205 ◽  
pp. 3898-3902 ◽  
Author(s):  
Yongzhang Cui ◽  
Guokai Zhang ◽  
Wei Liu ◽  
Zhen Li ◽  
Nan Jiang
Author(s):  
Monssif Najim ◽  
M'barek Feddaoui ◽  
Abderrahman Nait Alla ◽  
Adil Charef

This chapter presents a numerical investigation of heat and mass transfer characteristics during the evaporation of liquid films in vertical geometries. A two-phase model is developed to simulate laminar film evaporation into laminar gas flow. The liquid film evaporation is evaluated under adiabatic and heated wall conditions for both pure and binary liquid film. The model is based on a finite difference method to solve the governing equations of the two phases. The obtained results concerns two industrial processes. The first part of the chapter is devoted to the analysis of the thermal protection of vertical channel wall, while the second part is devoted to the desalination process by falling liquid film. The simulations results allowed the determination of the optimal operating conditions for both processes.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2170
Author(s):  
Dagnija Blumberga ◽  
Vivita Priedniece ◽  
Rūdolfs Rumba ◽  
Vladimirs Kirsanovs ◽  
Agris Ņikitenko ◽  
...  

Optimal performance parameters must be found in order to organize efficient heat and mass transfer and effective flue gas cooling using a wet scrubber. Mathematical models are widely used for system optimization. However, a significant number of the available models have application limitations. This study presents a universal model for heat and mass transfer simulation in a scrubber called a fog unit, which has been developed and validated. Validation was performed by comparing the experimental and calculated results. Good agreement was achieved among the data, with differences between results not exceeding 10%. The model facilitates an investigation of the effects of gas flow, droplet size, and sprayed water on heat recovery from flue gas. An experimental matrix for fog unit capacity which included five main variables was designed and analyzed. The boundaries of the parameters are set considering the results of the experiments. The optimization method used is the path of the steepest ascent. The obtained results show the parameter change steps to achieve higher capacity of the condenser. In the studied unit, the maximum condenser capacity is limited by a flue gas flow value of 0.01 Nm3/s. The condenser optimization study that was conducted is viewed as a basis for further studies.


Author(s):  
Joonguen Park ◽  
Shinku Lee ◽  
Sunyoung Kim ◽  
Joongmyeon Bae

This paper discusses a numerical analysis of the heat and mass transfer characteristics in an autothermal methane reformer. Assuming local thermal equilibrium between the bulk gas and the surface of the catalyst, a one-medium approach for the porous medium analysis was incorporated. Also, the mass transfer between the bulk gas and the catalyst’s surface was neglected due to the relatively low gas velocity. For the catalytic surface reaction, the Langmuir–Hinshelwood model was incorporated in which methane (CH4) is reformed to hydrogen-rich gases by the autothermal reforming (ATR) reaction. Full combustion, steam reforming, water-gas shift, and direct steam reforming reactions were included in the chemical reaction model. Mass, momentum, energy, and species balance equations were simultaneously calculated with the chemical reactions for the multiphysics analysis. By varying the four operating conditions (inlet temperature, oxygen to carbon ratio (OCR), steam to carbon ratio, and gas hourly space velocity (GHSV)), the performance of the ATR reactor was estimated by the numerical calculations. The SR reaction rate was improved by an increased inlet temperature. The reforming efficiency and the fuel conversion reached their maximum values at an OCR of 0.7. When the GHSV was increased, the reforming efficiency increased but the large pressure drop may decrease the system efficiency. From these results, we can estimate the optimal operating conditions for the production of large amounts of hydrogen from methane.


Sign in / Sign up

Export Citation Format

Share Document