Lattice Boltzmann simulations for surface wettability effects in saturated pool boiling heat transfer

Author(s):  
Shuai Gong ◽  
Ping Cheng
2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Jie Qin ◽  
Zhiguo Xu ◽  
Xiaofei Ma

Abstract Based on the newly developed geometrical model of open-cell metal foam, pool boiling heat transfer in open-cell metal foam, considering thermal responses of foam skeletons, is investigated by the phase-change lattice Boltzmann method (LBM). Pool boiling patterns are obtained at different heat fluxes. The effects of pore density and foam thickness on bubble dynamics and pool boiling heat transfer are revealed. The results show that “bubble entrainment” promotes fluid mixing and bubble sliding inside metal foam. Based on force analysis, the sliding bubble is pinned on the heating surface and cannot lift off completely at high heat flux due to the increasing surface tension force. Pool boiling heat transfer coefficient decreases with increasing pore density and foam thickness due to high bubble escaping resistance.


2021 ◽  
Vol 9 ◽  
Author(s):  
Qifan Zou ◽  
Xiuliang Liu ◽  
Yongyan Hu ◽  
Yuxuan Chang ◽  
Pengkun Li

Pool boiling is the heat-transfer mechanism of many heat exchangers inside ocean nuclear power plants working under the complex marine circumstances. Also, ocean conditions will create a new acceleration field other than gravity for the fluid, which induces some unique thermal–hydraulic characteristics. In this study, pool boiling under heaving conditions is numerically simulated using multiple relaxation time phase change lattice Boltzmann method. Firstly, the simulated results under static condition have been validated with recognized empirical equations, such as Rohsenow’s correlation at nucleate boiling, Zuber’s model, and Kandlikar’s model about critical heat flux (CHF). Then, pool boiling patterns, the boiling curve of time-averaged heat flux, transient heat flux, and heaving effects on different pool boiling regions are investigated. The results show that pool boiling curves of time-averaged heat flux between heaving conditions and static conditions with middle superheat degrees are similar. Heat transfer under heaving conditions at low superheat is somewhat enhanced, and it is weakened at high superheat, which leads to a slightly smaller critical heat flux with larger superheat compared with that under static conditions. Moreover, distinct fluctuation of the transient heat flux of pool boiling under heaving conditions is found for all boiling regimes. Furthermore, the heaving condition shows both positive and negative effects on pool boiling heat transfer at high-gravity and low-gravity regions, respectively. Besides, both the larger heaving height and shorter period time bring out more violent heaving motion and make a greater impact on pool boiling heat transfer.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2138
Author(s):  
Sayantan Mukherjee ◽  
Naser Ali ◽  
Nawaf F. Aljuwayhel ◽  
Purna C. Mishra ◽  
Swarnendu Sen ◽  
...  

Non-metallic oxide nanofluids have recently attracted interest in pool boiling heat transfer (PBHT) studies. Research work on carbon and silica-based nanofluids is now being reported frequently by scholars. The majority of these research studies showed improvement in PBHT performance. The present study reports an investigation on the PBHT characteristics and performance of water-based silica nanofluids in the nucleate boiling region. Sonication-aided stable silica nanofluids with 0.0001, 0.001, 0.01, and 0.1 particle concentrations were prepared. The stability of nanofluids was detected and confirmed via visible light absorbance and zeta potential analyses. The PBHT performance of nanofluids was examined in a customized boiling pool with a flat heating surface. The boiling characteristics, pool boiling heat transfer coefficient (PBHTC), and critical heat flux (CHF) were analyzed. The effects of surface wettability, contact angle, and surface roughness on heat transfer performance were investigated. Bubble diameter and bubble departure frequency were estimated using experimental results. PBHTC and CHF of water have shown an increase due to the nanoparticle inclusion, where they have reached a maximum improvement of ≈1.33 times over that of the base fluid. The surface wettability of nanofluids was also enhanced due to a decrease in boiling surface contact angle from 74.1° to 48.5°. The roughness of the boiling surface was reduced up to 1.5 times compared to the base fluid, which was due to the nanoparticle deposition on the boiling surface. Such deposition reduces the active nucleation sites and increases the thermal resistance between the boiling surface and bulk fluid layer. The presence of the dispersed nanoparticles caused a lower bubble departure frequency by 2.17% and an increase in bubble diameter by 4.48%, which vigorously affects the pool boiling performance.


Author(s):  
Hai Trieu Phan ◽  
Nadia Caney ◽  
Philippe Marty ◽  
Stephane Colasson ◽  
Je´roˆme Gavillet ◽  
...  

Although boiling process has been a major subject of research for several decades, its physics still remain unclear and require further investigation. This study aims at highlighting the effects of the surface wettability on pool boiling heat transfer. Nanocoating techniques were used to vary the water contact angle from 20 to 110° by modifying nanoscale surface topography and chemistry. The experimental results obtained disagree with the predictions of the classical models. A new approach of nucleation mechanism is established to clarify the nexus between the surface wettability and the nucleate boiling heat transfer. In this approach, we introduce the concept of macro- and micro-contact angles to explain the observed phenomenon.


2020 ◽  
Vol 56 (12) ◽  
pp. 3273-3287
Author(s):  
Sandipan Deb ◽  
Sagnik Pal ◽  
Dipak Chandra Das ◽  
Mantu Das ◽  
Ajoy Kumar Das ◽  
...  

2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Kaushik Mondal ◽  
Anandaroop Bhattacharya

Abstract This paper reports our numerical studies on pool boiling heat transfer from a plane and with protruding surface using single component pseudo-potential phase change model of lattice Boltzmann method. The surface protrusions are assumed to be rectangular in shape with a given height and width. The surface protrusions are seen to promote nucleation of bubbles from the heated surface resulting in significantly higher heat transfer rates compared to the plane surface. Spatial and temporal averaged heat fluxes from all these protruding surfaces are found to be 3–4 times higher than that of a plane surface. The effects of the protrusion height, width, spacing, and associated geometrical parameters on surface heat flux have been investigated in order to arrive at an optimal design for maximum heat transfer.


Sign in / Sign up

Export Citation Format

Share Document