structured surfaces
Recently Published Documents


TOTAL DOCUMENTS

709
(FIVE YEARS 152)

H-INDEX

48
(FIVE YEARS 7)

Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 113
Author(s):  
Destin Bamokina Moanda ◽  
Martin Lehmann ◽  
Peter Niemz

Although glueing softwood is well mastered by the industry, predicting and controlling bond quality for hardwood is still challenging after years of research. Parameters such as the adhesive type, resin–hardener ratio, and the penetration behaviour of the wood are determinants for the bond quality. The aim of this work was to assess to what extent the glueing behaviour of beechwood can be improved by using structural planing. The different surfacing methods were characterised by their roughness. The bond strength of the micro-structured surfaces was determined according to EN 302-1, and the delamination resistance was tested as indicated by EN 302-2 for type I adhesives. Micro-structured surfaces were compared with different surfaces (generated by surfacing methods such as dull/sharp planing and sanding). In dry test conditions, all surfacing methods gave satisfying results. In the wet stage, the bond strength on the finer micro-structured surface slightly outperformed the coarse structure surface. For the delamination resistance, a clear improvement could be observed for melamine-formaldehyde-bonded specimens since, when using the recommended amount of adhesive, micro-structured surfaces fulfilled the requirements. Nevertheless, structural planing cannot lead to a reduction in the applied grammage since no sample with a smaller amount fulfilled EN 302-2 requirements even by observing the recommended closed assembly waiting time. Adhesion area enlargement of the micro-structuring is minor. The good delamination performance without waiting time (CAT) is not caused by surface enlargement, since finer micro-structured surface with negligible area increase and delivered even better delamination resistance. Subsurface analysis should be carried out to thoroughly investigate this phenomenon.


2022 ◽  
Author(s):  
Cheonji Lee ◽  
Seungmook Ji ◽  
Sunjong Oh ◽  
Seungchul Park ◽  
Yungdo Jung ◽  
...  

Hierarchical structures in nature provide unique functions for living organisms that can inspire technology. Nanoscale hierarchical structured surfaces are essential to realize the dual functions of non-wetting and transparency for...


Author(s):  
S. Eichinger ◽  
T. Storch ◽  
T. Grab ◽  
S. Tepel ◽  
M. Heinrich ◽  
...  

2022 ◽  
Vol 73 ◽  
pp. 270-283
Author(s):  
Chunjin Wang ◽  
Zili Zhang ◽  
Chi Fai Cheung ◽  
Wang Luo ◽  
Yee Man Loh ◽  
...  
Keyword(s):  

Fluids ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 2
Author(s):  
Max Koch ◽  
Juan Manuel Rosselló ◽  
Christiane Lechner ◽  
Werner Lauterborn ◽  
Robert Mettin

The dynamics of a laser-induced bubble on top of a solid cylinder is studied both experimentally and numerically. When the bubble is generated close to the flat top along the axis of the cylinder and its maximum radius exceeds the one of the flat top surface, it collapses in the form of a mushroom with a footing on the cylinder, a long stem and a hat-like cap typical for a mushroom head. The head may collapse forming a thin, fast liquid jet into the stem, depending on bubble size and bubble distance to the top of the cylinder. Several experimental and numerical examples are given. The results represent a contribution to understand the behavior of bubbles collapsing close to structured surfaces and in particular, how thin, fast jets are generated.


2021 ◽  
pp. 1-19
Author(s):  
Kazunori Kataoka ◽  
Teruo Okano ◽  
Yasuhisa Sakurai ◽  
Atsushi Maruyama ◽  
Teiji Tsuruta

2021 ◽  
Vol 118 (50) ◽  
pp. e2110281118
Author(s):  
Gen Honda ◽  
Nen Saito ◽  
Taihei Fujimori ◽  
Hidenori Hashimura ◽  
Mitsuru J. Nakamura ◽  
...  

In fast-moving cells such as amoeba and immune cells, dendritic actin filaments are spatiotemporally regulated to shape large-scale plasma membrane protrusions. Despite their importance in migration, as well as in particle and liquid ingestion, how their dynamics are affected by micrometer-scale features of the contact surface is still poorly understood. Here, through quantitative image analysis of Dictyostelium on microfabricated surfaces, we show that there is a distinct mode of topographical guidance directed by the macropinocytic membrane cup. Unlike other topographical guidance known to date that depends on nanometer-scale curvature sensing protein or stress fibers, the macropinocytic membrane cup is driven by the Ras/PI3K/F-actin signaling patch and its dependency on the micrometer-scale topographical features, namely PI3K/F-actin–independent accumulation of Ras-GTP at the convex curved surface, PI3K-dependent patch propagation along the convex edge, and its actomyosin-dependent constriction at the concave edge. Mathematical model simulations demonstrate that the topographically dependent initiation, in combination with the mutually defining patch patterning and the membrane deformation, gives rise to the topographical guidance. Our results suggest that the macropinocytic cup is a self-enclosing structure that can support liquid ingestion by default; however, in the presence of structured surfaces, it is directed to faithfully trace bent and bifurcating ridges for particle ingestion and cell guidance.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012083
Author(s):  
E M Starinskaya ◽  
N B Miskiv ◽  
M K Lei ◽  
V V Terekhov

Abstract In this work, unique biphilic substrates were prepared with a sharp spatial gradient of the contact angle of wetting. Experimental studies of the process of evaporation of liquid droplets lying on the structured surfaces have been carried out. In the experiment, the dynamics of the temperature of an evaporating droplet was compared depending on its orientation in space. It was found that suspended droplets of 0.1 wt % Fe3O4 nanofluid have a higher evaporation temperature and a higher evaporation rate as compared to sessile droplets.


Sign in / Sign up

Export Citation Format

Share Document