Exergy and entropy generation analysis of TiO2–water nanofluid flow through the water block as an electronics device

Author(s):  
S.S. Khaleduzzaman ◽  
M.R. Sohel ◽  
I.M. Mahbubul ◽  
R. Saidur ◽  
J. Selvaraj
2020 ◽  
Vol 16 (6) ◽  
pp. 1475-1496
Author(s):  
A. Roja ◽  
B.J. Gireesha ◽  
B.C. Prasannakumara

PurposeMiniaturization with high thermal performance and lower cost is one of the advanced developments in industrial science chemical and engineering fields including microheat exchangers, micro mixers, micropumps, cooling microelectro mechanical devices, etc. In addition to this, the minimization of the entropy is the utilization of the energy of thermal devices. Based on this, in the present investigation, micropolar nanofluid flow through an inclined channel under the impacts of viscous dissipation and mixed convection with velocity slip and temperature jump has been numerically studied. Also the influence of magnetism and radiative heat flux is used.Design/methodology/approachThe nonlinear system of ordinary differential equations are obtained by applying suitable dimensionless variables to the governing equations, and then the Runge–Kutta–Felhberg integration scheme is used to find the solution of velocity and temperature. Entropy generation and Bejan number are calculated via using these solutions.FindingsIt is established to notice that the entropy generation can be improved with the aspects of viscous dissipation, magnetism and radiative heat flux. The roles of angle of inclination (α), Eckert number (Ec), Reynolds number (Re), thermal radiation (Rd), material parameter (K),  slip parameter (δ), microinertial parameter (aj), magnetic parameter (M), Grashof number (Gr) and pressure gradient parameter (A) are demonstrated. It is found that the angle of inclination and Grashof number enhances the entropy production while it is diminished with material parameter and magnetic parameter.Originality/valueElectrically conducting micropolar nanofluid flow through an inclined channel subjected to the friction irreversibility with temperature jump and velocity slip under the influence of radiative heat flux has been numerically investigated.


Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 1008
Author(s):  
Ehsan Aminian ◽  
Hesam Moghadasi ◽  
Hamid Saffari ◽  
Amir Mirza Gheitaghy

Corrugating channel wall is considered to be an efficient procedure for achieving improved heat transfer. Further enhancement can be obtained through the utilization of nanofluids and porous media with high thermal conductivity. This paper presents the effect of geometrical parameters for the determination of an appropriate configuration. Furthermore, the optimization of forced convective heat transfer and fluid/nanofluid flow through a sinusoidal wavy-channel inside a porous medium is performed through the optimization of entropy generation. The fluid flow in porous media is considered to be laminar and Darcy–Brinkman–Forchheimer model has been utilized. The obtained results were compared with the corresponding numerical data in order to ensure the accuracy and reliability of the numerical procedure. As a result, increasing the Darcy number leads to the increased portion of thermal entropy generation as well as the decreased portion of frictional entropy generation in all configurations. Moreover, configuration with wavelength of 10 mm, amplitude of 0.5 mm and phase shift of 60° was selected as an optimum geometry for further investigations on the addition of nanoparticles. Additionally, increasing trend of average Nusselt number and friction factor, besides the decreasing trend of performance evaluation criteria (PEC) index, were inferred by increasing the volume fraction of the nanofluid (Al2O3 and CuO).


Entropy ◽  
2016 ◽  
Vol 18 (6) ◽  
pp. 223 ◽  
Author(s):  
Tehseen Abbas ◽  
Muhammad Ayub ◽  
Muhammad Bhatti ◽  
Mohammad Rashidi ◽  
Mohamed Ali

Sign in / Sign up

Export Citation Format

Share Document