Feature of Entropy Generation in Cu-Al2O3/Ethylene Glycol Hybrid Nanofluid Flow Through a Rotating Channel

2020 ◽  
Vol 10 (4) ◽  
pp. 950-967
Author(s):  
S. Das ◽  
S. Sarkar ◽  
R. N. Jana
Author(s):  
S.S. Khaleduzzaman ◽  
M.R. Sohel ◽  
I.M. Mahbubul ◽  
R. Saidur ◽  
J. Selvaraj

Author(s):  
Suriya Uma Devi. S ◽  
Fazle Mabood ◽  
Wasim Jamshed ◽  
S.R. Mishra ◽  
Kottakkaran Sooppy Nisar ◽  
...  

2020 ◽  
Vol 16 (6) ◽  
pp. 1595-1616
Author(s):  
N. Mahato ◽  
S.M. Banerjee ◽  
R.N. Jana ◽  
S. Das

PurposeThe article focuses on the magnetohydrodynamic (MHD) convective flow of MoS2-SiO2 /ethylene glycol (EG) hybrid nanofluid. The effectiveness of Hall current, periodically heating wall and shape factor of nanoparticles on the magnetized flow of hybrid nanocomposite molybdenum disulfide- silicon dioxide (MoS2-SiO2) suspended in ethylene glycol (EG) in a vertical rotating channel under the influence of strong magnetic dipole (Hall effect) and thermal radiation is assessed. One of the channel walls has an oscillatory temperature gradient. Four different shapes (i.e. brick, cylinder, platelet and blade) of nanoparticles disseminated in base fluid (EG) are considered for simulation of the flow.Design/methodology/approachThe analytical solution of governing equations has been presented. Influences of emerging physical parameters on the velocity and temperature profiles, the shear stresses and the rate of heat transfer are pointed out and discussed via graphs and tables.FindingsThe analysis revealed that Hall parameter has suppressing behavior on the velocity profiles within the rotating channel. The impact of nanoparticle shape factor advances the temperature characteristics significantly in the rotating channel. Brick-shape nanoparticles put up relatively low-temperature distribution in the rotating channel. The Hall parameter reduces the amplitudes of the shear stresses at the channel wall. However, the radiation parameter enhances the amplitude of the rate of heat transfer at the channel wall.Social implicationsThe important technical advantage of hybrid composition of nanoparticles as a drug carrier is its stability, high thermal conductivity, high load carrying capacity, etc. The proposed model may be beneficial in biomedical engineering, automobile parts, mineral and cleaning oils manufacturing, rubber and plastic industries.Originality/valueTo the best of our knowledge, there is little or no report on the aspects of assessment of the effectiveness of Hall current and nanoparticle shape factor on an MHD flow and heat transfer of an electrically conducting MoS2-SiO2/EG ethylene glycol-based hybrid nanofluid confined in a vertical channel with periodically varying wall temperature subject to a rotating frame. The present work furnishes a robust benchmark for the dynamics of nanofluids.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sadaf Masood ◽  
Muhammad Farooq ◽  
Aisha Anjum

AbstractThis article focuses on hybrid nanofluid flow induced by stretched surface. The present context covers stagnation point flow of a hybrid nanofluid with the effect of heat generation/absorption. Currently most famous class of nanofluids is Hybrid nanofluid. It contains polystyrene and titanium oxide as a nanoparticles and water as a base fluid. First time attributes of heat transfer are evaluated by utilizing polystyrene–TiO2/H2O hybrid nanofluid with heat generation/absorption. Partial differential equations are converted into ordinary differential equation by using appropriate transformations for heat and velocity. Homotopy analysis method is operated for solution of ordinary differential equations. Flow and heat are disclosed graphically for unlike parameters. Resistive force and heat transfer rate is deliberated mathematically and graphically. It is deduced that velocity field enhanced for velocity ratio parameter whereas temperature field grows for heat generation/absorption coefficient. To judge the production of any engineering system entropy generation is also calculated. It is noticed that entropy generation grows for Prandtl number and Eckert number while it shows opposite behavior for temperature difference parameter.


Sign in / Sign up

Export Citation Format

Share Document