eulerian model
Recently Published Documents


TOTAL DOCUMENTS

237
(FIVE YEARS 39)

H-INDEX

23
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Vasanth Bharath Sivakumar ◽  
Dinesh Kumar Jagan Mohan ◽  
Suresh Subramani ◽  
Hariharan Rathinavel

2021 ◽  
Vol 931 ◽  
Author(s):  
Alessandro Sozza ◽  
Massimo Cencini ◽  
Stefano Musacchio ◽  
Guido Boffetta

Suspended particles can significantly alter the fluid properties and, in particular, can modify the transition from laminar to turbulent flow. We investigate the effect of heavy particle suspensions on the linear stability of the Kolmogorov flow by means of a multiple-scale expansion of the Eulerian model originally proposed by Saffman (J. Fluid Mech., vol. 13, issue 1, 1962, pp. 120–128). We find that, while at small Stokes numbers particles always destabilize the flow (as already predicted by Saffman in the limit of very thin particles), at sufficiently large Stokes numbers the effect is non-monotonic in the particle mass fraction and particles can both stabilize and destabilize the flow. Numerical analysis is used to validate the analytical predictions. We find that in a region of the parameter space the multiple-scale expansion overestimates the stability of the flow and that this is a consequence of the breakdown of the scale separation assumptions.


Author(s):  
Mohammed Sayyari ◽  
Lisandro Dalcin ◽  
Matteo Parsani

AbstractNonlinear entropy stability analysis is used to derive entropy stable no-slip wall boundary conditions for the Eulerian model proposed by Svärd (Phys A Stat Mech Appl 506:350–375, 2018). The spatial discretization is based on entropy stable collocated discontinuous Galerkin operators with the summation-by-parts property for unstructured grids. A set of viscous test cases of increasing complexity are simulated using both the Eulerian and the classic compressible Navier–Stokes models. The numerical results obtained with the two models are compared, and similarities and differences are then highlighted. However, the differences are very small and probably smaller than what the current experimental technology allows to measure.


2021 ◽  
Vol 9 ◽  
Author(s):  
Aldo Marchetto ◽  
David Simpson ◽  
Wenche Aas ◽  
Hilde Fagerli ◽  
Karin Hansen ◽  
...  

Atmospheric nitrogen and sulfur deposition is an important effect of atmospheric pollution and may affect forest ecosystems positively, for example enhancing tree growth, or negatively, for example causing acidification, eutrophication, cation depletion in soil or nutritional imbalances in trees. To assess and design measures to reduce the negative impacts of deposition, a good estimate of the deposition amount is needed, either by direct measurement or by modeling. In order to evaluate the precision of both approaches and to identify possible improvements, we compared the deposition estimates obtained using an Eulerian model with the measurements performed by two large independent networks covering most of Europe. The results are in good agreement (bias <25%) for sulfate and nitrate open field deposition, while larger differences are more evident for ammonium deposition, likely due to the greater influence of local ammonia sources. Modeled sulfur total deposition compares well with throughfall deposition measured in forest plots, while the estimate of nitrogen deposition is affected by the tree canopy. The geographical distribution of pollutant deposition and of outlier sites where model and measurements show larger differences are discussed.


2021 ◽  
Author(s):  
Moaz Allehaibi ◽  
Xinlei Liu ◽  
Hammam Aljabri ◽  
Moez Ben Houidi ◽  
Balaji Mohan ◽  
...  

Fluids ◽  
2021 ◽  
Vol 6 (9) ◽  
pp. 309
Author(s):  
Kevin A. Giraldo ◽  
Juan Sebastian Bermudez ◽  
Carlos E. Torres ◽  
Luis H. Reyes ◽  
Johann F. Osma ◽  
...  

One of the main routes to ensure that biomolecules or bioactive agents remain active as they are incorporated into products with applications in different industries is by their encapsulation. Liposomes are attractive platforms for encapsulation due to their ease of synthesis and manipulation and the potential to fuse with cell membranes when they are intended for drug delivery applications. We propose encapsulating our recently developed cell-penetrating nanobioconjugates based on magnetite interfaced with translocating proteins and peptides with the purpose of potentiating their cell internalization capabilities even further. To prepare the encapsulates (also known as magnetoliposomes (MLPs)), we introduced a low-cost microfluidic device equipped with a serpentine microchannel to favor the interaction between the liposomes and the nanobioconjugates. The encapsulation performance of the device, operated either passively or in the presence of ultrasound, was evaluated both in silico and experimentally. The in silico analysis was implemented through multiphysics simulations with the software COMSOL Multiphysics 5.5® (COMSOL Inc., Stockholm, Sweden) via both a Eulerian model and a transport of diluted species model. The encapsulation efficiency was determined experimentally, aided by spectrofluorimetry. Encapsulation efficiencies obtained experimentally and in silico approached 80% for the highest flow rate ratios (FRRs). Compared with the passive mixer, the in silico results of the device under acoustic waves led to higher discrepancies with respect to those obtained experimentally. This was attributed to the complexity of the process in such a situation. The obtained MLPs demonstrated successful encapsulation of the nanobioconjugates by both methods with a 36% reduction in size for the ones obtained in the presence of ultrasound. These findings suggest that the proposed serpentine micromixers are well suited to produce MLPs very efficiently and with homogeneous key physichochemical properties.


Author(s):  
Irina I. Rypina ◽  
Timothy R. Getscher ◽  
Lawrence J. Pratt ◽  
Baptiste Mourre

AbstractThis paper presents analyses of drifters with drogues at different depths – 1, 10, 30, 50 m – that were deployed in the Mediterranean Sea to investigate frontal subduction and upwelling. Drifter trajectories were used to estimate divergence, vorticity, vertical velocity, and finite-size Lyapunov exponents (FTLEs), and to investigate the balance of terms in the vorticity equation. The divergence and vorticity are O(f) and change sign along trajectories. Vertical velocity is O(1 mm/s), increases with depth, indicates predominant upwelling with isolated downwelling events, and sometimes changes sign between 1 and 50 m. Vortex stretching is one of, but not the only, significant term in the vorticity balance. 2D FTLEs are 2 × 10−51/s after 1 day, twice larger than in a 400-m-resolution numerical model. 3D FTLEs are 50% larger than 2D FTLEs and are dominated by the vertical shear of horizontal velocity. Bootstrapping suggests uncertainty levels of ~10% of the time-mean absolute values for divergence and vorticity. Analysis of simulated drifters in a model suggests that drifter-based estimates of divergence and vorticity are close to the Eulerian model estimates, except when drifters get aligned into long filaments. Drifter-based vertical velocity is close to the Eulerian model estimates at 1 m but differs at deeper depths. The errors in the vertical velocity are largely due to the lateral separation between drifters at different depths, and partially due to only measuring at 4 depths. Overall, this paper demonstrates how drifters, heretofore restricted to 2D near-surface observations, can be used to learn about 3D flow properties throughout the upper layer of the water column.


2021 ◽  
Vol 5 (2) ◽  
pp. 41
Author(s):  
Irati Malkorra ◽  
Hanène Souli ◽  
Ferdinando Salvatore ◽  
Pedro Arrazola ◽  
Joel Rech ◽  
...  

Drag finishing is a widely used superfinishing technique in the industry to polish parts under the action of abrasive media combined with an active surrounding liquid. However, the understanding of this process is not complete. It is known that pyramidal abrasive media are more prone to rapidly improving the surface roughness compared to spherical ones. Thus, this paper aims to model how the shape of abrasive media (spherical vs. pyramidal) influences the material removal mechanisms at the interface. An Arbitrary Lagrangian–Eulerian model of drag finishing is proposed with the purpose of estimating the mechanical loadings (normal stress, shear stress) induced by both abrasive media at the interface. The rheological behavior of both abrasive slurries (media and liquid) has been characterized by means of a Casagrande direct shear test. In parallel, experimental drag finishing tests were carried out with both media to quantify the drag forces. The correlation between the numerical and experimental drag forces highlights that the abrasive media with a pyramidal shape exhibits a higher shear resistance, and this is responsible for inducing higher mechanical loadings on the surfaces and, through this, for a faster decrease of the surface roughness.


Sign in / Sign up

Export Citation Format

Share Document