A single-sided method based on transient plane source technique for thermal conductivity measurement of liquids

2017 ◽  
Vol 109 ◽  
pp. 1181-1190 ◽  
Author(s):  
Qing Ai ◽  
Zhen-Wen Hu ◽  
Lin-Lin Wu ◽  
Feng-Xian Sun ◽  
Ming Xie
2014 ◽  
Vol 526 ◽  
pp. 46-51
Author(s):  
Li Xiong Zhang ◽  
Rong Gang Gao

Based on the traditional theory of transient plane source for thermal conductivity measurement, this paper designed and developed a new pattern of heating and temperature sensing probe, presented the study of transient heat conduction of half-infinite plane while being heated, established a modified mathematical model of transient plane source method, and achieved the measurement of thermal conductivity of automotive interior material sample by the data processing method of mathematical iteration and liner regression using the modified transient plane source probe. According to the data of experiments, the instrument which this paper designed has a high precision of 5% and a wide range of 0.003-1W/(mK).This paper provides a practicable way for heat capacity determination of automotive interior materials.


Author(s):  
Yi He ◽  
Grace S. Ng

Abstract Hot disk metrology represents a transient plane source measurement technique for characterizing thermal conductivity and thermal diffusivity of a wide range of materials. In this technique, the hot disk sensor serves as a heat source and a thermometer. During the measurement, the sensor is sandwiched between two halves of a sample and a constant current is supplied to the sensor. The temperature increase at the sensor surface is strongly dependent on the thermal transport properties of the surrounding material. By monitoring the temperature increase as a function of time, one can determine the thermal conductivity and thermal diffusivity of the surrounding material. The main advantages of the hot disk technique include: wide thermal conductivity range, from 0.005 W/m·K to 500 W/m·K; wide range of materials, from liquid to solid; easy sample preparation; non-destructive; and more importantly, high accuracy (within 2% or better). In this paper, the basic theory of the hot disk technique will be discussed based on first principles. This technique has been successfully used to characterize a variety of thermal interface materials (TIMs) used in electronic packaging. The experimental results are in good agreement with the results obtained by another method.


2005 ◽  
Vol 480-481 ◽  
pp. 133-138 ◽  
Author(s):  
J.A. Reglero ◽  
Miguel A. Rodríguez-Pérez ◽  
D. Lehmhus ◽  
M. Windmann ◽  
Jose A. de Saja ◽  
...  

A collection of AlSi7 closed cell foams were fabricated following the powder metallurgical route [1,2], reaching densities between 540 Kg/m3 and 1350 Kg/m3. Thermal conductivity of the samples was determined using the Transient Plane Source technique (TPS) [3,4], and influence of density was estimated. Several models were tested, and the correlation between experimental data and theoretical results was evaluated. Finally, measurements in different directions were performed, revealing the use of the TPS technique as a non-destructive tool to investigate the existence of in-homogeneities derived from the foaming process.


Author(s):  
M. S. SHEKHAWAT ◽  
S. K. TAK ◽  
R. MANGAL

Thermal conductivity and thermal diffusivity of blended clays have been studied with special reference to Ukrainian clay. The blends were made of three different clays available locally in western part of Rajasthan. Thermal conductivity and thermal diffusivity were determined using the transient plane source (TPS) technique at room temperature and normal pressure. It was found that thermal conductivity and thermal diffusivity of the blends reported maximum at temperature 1200° C and near in the values of Ukrainian clay. The thermal conductivity of blend B2 reported maximum value (1.29 W/m-k) in the present study.


Sign in / Sign up

Export Citation Format

Share Document