Bubble breakup and coalescence models for bubbly flow simulation using interfacial area transport equation

Author(s):  
Hang Liu ◽  
Takashi Hibiki
Author(s):  
Deoras Prabhudharwadkar ◽  
Chris Bailey ◽  
Martin Lopez de Bertodano ◽  
John R. Buchanan

This paper describes in detail the assessment of the CFD code CFX to predict adiabatic liquid-gas two-phase bubbly flow. This study has been divided into two parts. In the first exercise, the effect of Lift Force, Wall Force and the Turbulent Diffusion Force have been assessed using experimental data from the literature for air-water upward bubbly flows through a pipe. The data used here had a characteristic near wall void peaking which was largely influenced by the joint action of the three forces mentioned above. The simulations were performed with constant bubble diameter assuming no bubble interactions. This exercise resulted in selection of the most appropriate closure form and closure coefficients for the above mentioned forces for the range of flow conditions chosen. In the second exercise, the One-Group Interfacial Area Transport equation was introduced in the two-fluid model of CFX. The interfacial area density plays important role in the correct prediction of interfacial mass, momentum and energy transfer and is affected by bubble breakup and coalescence processes in adiabatic flows. The One-Group Interfacial Area Transport Equation (IATE) has been developed and implemented for one-dimensional models and validated using cross-sectional area averaged experimental data over the last decade by various researchers. The original one-dimensional model has been extended to multidimensional flow predictions in this study and the results are presented in this paper. The paper also discusses constraints posed by the commercial CFD code CFX and the solutions worked out to obtain the most accurate implementation of the model.


Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1106
Author(s):  
Huiting Chen ◽  
Shiyu Wei ◽  
Weitian Ding ◽  
Han Wei ◽  
Liang Li ◽  
...  

Bubble coalescence and breakup play important roles in physical-chemical processes and bubbles are treated in two groups in the interfacial area transport equation (IATE). This paper presents a review of IATE for bubble coalescence and breakup to model five bubble interaction mechanisms: bubble coalescence due to random collision, bubble coalescence due to wake entrainment, bubble breakup due to turbulent impact, bubble breakup due to shearing-off, and bubble breakup due to surface instability. In bubble coalescence, bubble size, velocity and collision frequency are dominant. In bubble breakup, the influence of viscous shear, shearing-off, and surface instability are neglected, and their corresponding theory and modelling are rare in the literature. Furthermore, combining turbulent kinetic energy and inertial force together is the best choice for the bubble breakup criterion. The reviewed one-group constitutive models include the one developed by Wu et al., Ishii and Kim, Hibiki and Ishii, Yao and Morel, and Nguyen et al. To extend the IATE prediction capability beyond bubbly flow, two-group IATE is needed and its performance is strongly dependent on the channel size and geometry. Therefore, constitutive models for two-group IATE in a three-type channel (i.e., narrow confined channel, round pipe and relatively larger pipe) are summarized. Although great progress in extending the IATE beyond churn-turbulent flow to churn-annual flow was made, there are still some issues in their modelling and experiments due to the highly distorted interface measurement. Regarded as the challenges to be addressed in the further study, some limitations of IATE general applicability and the directions for future development are highlighted.


2011 ◽  
Vol 241 (3) ◽  
pp. 865-873 ◽  
Author(s):  
Justin D. Talley ◽  
Seungjin Kim ◽  
John Mahaffy ◽  
Stephen M. Bajorek ◽  
Kirk Tien

Sign in / Sign up

Export Citation Format

Share Document