bubble number
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 16)

H-INDEX

14
(FIVE YEARS 2)

Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 63
Author(s):  
Xiangcao Jiang ◽  
Jiupeng Song ◽  
Fusheng Peng ◽  
Donghong Guo ◽  
Yijin Fang ◽  
...  

Tungsten (W) fiber-reinforced tungsten (Wf/W) composite with ultra-high strength and high-temperature resistance is considered an attractive candidate material for plasma-facing materials (PFM) in future fusion reactors. The main component of Wf/W composite is tungsten wire, which is obtained through powder metallurgy and the drawing process. In this paper, high potassium (K)-doped tungsten wires with 98 ppm of K and 61 ppm of impurities are prepared using traditional and optimized processing technologies, respectively, and a comparative study with conventional K-doped tungsten wires with 83 ppm of K and 80 ppm of impurities is conducted. The high-temperature mechanical properties as well as the microstructure’s evolution of the prepared tungsten wires are investigated. The results show that the high-temperature performance of K-doped tungsten wires is improved by increasing the K content and by simultaneously reducing the impurities. By adopting small compression deformation and low-temperature processing technology, the high-temperature performance of high K-doped tungsten wires can be further improved. A microstructure analysis indicates that the excellent high-temperature performance is attributed to a combination of the small K bubble size, high K bubble number density, and long K bubble string, which are produced through optimization of the processing technology. A study on the processing technology and the performance of tungsten wires with a high K content and a high purity can provide important information regarding Wf/W composites.


2021 ◽  
Author(s):  
John Fegyveresi ◽  
Richard Alley ◽  
Joan Fitzpatrick ◽  
Donald Voigt ◽  
Zoe Courville ◽  
...  

2021 ◽  
Vol 84 (1) ◽  
Author(s):  
Pedro Valdivia ◽  
Aaron A. Marshall ◽  
Brittany D. Brand ◽  
Michael Manga ◽  
Christian Huber

AbstractMafic volcanic activity is dominated by effusive to mildly explosive eruptions. Plinian and ignimbrite-forming mafic eruptions, while rare, are also possible; however, the conditions that promote such explosivity are still being explored. Eruption style is determined by the ability of gas to escape as magma ascends, which tends to be easier in low-viscosity, mafic magmas. If magma permeability is sufficiently high to reduce bubble overpressure during ascent, volatiles may escape from the magma, inhibiting violent explosive activity. In contrast, if the permeability is sufficiently low to retain the gas phase within the magma during ascent, bubble overpressure may drive magma fragmentation. Rapid ascent may induce disequilibrium crystallization, increasing viscosity and affecting the bubble network with consequences for permeability, and hence, explosivity. To explore the conditions that promote strongly explosive mafic volcanism, we combine microlite textural analyses with synchrotron x-ray computed microtomography of 10 pyroclasts from the 12.6 ka mafic Curacautín Ignimbrite (Llaima Volcano, Chile). We quantify microlite crystal size distributions (CSD), microlite number densities, porosity, bubble interconnectivity, bubble number density, and geometrical properties of the porous media to investigate the role of magma degassing processes at mafic explosive eruptions. We use an analytical technique to estimate permeability and tortuosity by combing the Kozeny-Carman relationship, tortuosity factor, and pyroclast vesicle textures. The groundmass of our samples is composed of up to 44% plagioclase microlites, > 85% of which are < 10 µm in length. In addition, we identify two populations of vesicles in our samples: (1) a convoluted interconnected vesicle network produced by extensive coalescence of smaller vesicles (> 99% of pore volume), and (2) a population of very small and completely isolated vesicles (< 1% of porosity). Computed permeability ranges from 3.0 × 10−13 to 6.3 × 10−12 m2, which are lower than the similarly explosive mafic eruptions of Tarawera (1886; New Zealand) and Etna (112 BC; Italy). The combination of our CSDs, microlite number densities, and 3D vesicle textures evidence rapid ascent that induced high disequilibrium conditions, promoting rapid syn-eruptive crystallization of microlites within the shallow conduit. We interpret that microlite crystallization increased viscosity while simultaneously forcing bubbles to deform as they grew together, resulting in the permeable by highly tortuous network of vesicles. Using the bubble number densities for the isolated vesicles (0.1-3−3 × 104 bubbles per mm3), we obtain a minimum average decompression rate of 1.4 MPa/s. Despite the textural evidence that the Curacautín magma reached the percolation threshold, we propose that rapid ascent suppressed outgassing and increased bubble overpressures, leading to explosive fragmentation. Further, using the porosity and permeability of our samples, we estimated that a bubble overpressure > 5 MPa could have been sufficient to fragment the Curacautín magma. Other mafic explosive eruptions report similar disequilibrium conditions induced by rapid ascent rate, implying that syn-eruptive disequilibrium conditions may control the explosivity of mafic eruptions more generally.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1546
Author(s):  
Kaouther Kerboua ◽  
Oualid Hamdaoui ◽  
Abdulaziz Alghyamah

In addition to bubble number density, bubble size distribution is an important population parameter governing the activity of acoustic cavitation bubbles. In the present paper, an iterative numerical method for equilibrium size distribution is proposed and combined to a model for bubble counting, in order to approach the number density within a population of acoustic cavitation bubbles of inhomogeneous sizing, hence the sonochemical activity of the inhomogeneous population based on discretization into homogenous groups. The composition of the inhomogeneous population is analyzed based on cavitation dynamics and shape stability at 300 kHz and 0.761 W/cm2 within the ambient radii interval ranging from 1 to 5 µm. Unstable oscillation is observed starting from a radius of 2.5 µm. Results are presented in terms of number probability, number density, and volume probability within the population of acoustic cavitation bubbles. The most probable group having an equilibrium radius of 3 µm demonstrated a probability in terms of number density of 27%. In terms of contribution to the void, the sub-population of 4 µm plays a major role with a fraction of 24%. Comparisons are also performed with the homogenous population case both in terms of number density of bubbles and sonochemical production of HO●, HO2●, and H● under an oxygen atmosphere.


2021 ◽  
Author(s):  
Indranova Suhendro ◽  
Atsushi Toramaru ◽  
Agung Harijoko ◽  
Haryo Edi Wibowo

Abstract The 52ka eruption of Maninjau caldera produced two distinctive type of white pumices: transparent (TWP) and non-transparent (NTWP). Both pumice types are crystal-poor (avg. 3.3 %), having similar mineralogy (pl > qz > bt > px > opq), similar glass compositions (avg. 78.5 wt. % SiO2), and similar plagioclase core compositions (avg. An20-30). We found that the abundance of TWP decrease towards the upper stratigraphic positions, together with the increase in NTWP, grey pumice, banded pumice, and lithic contents. Vesicles in TWP are typically dominated by large vesicles, while NTWP is characterized by abundant-small vesicles. Large vesicle corresponds to the preexisting bubble which formed in magma chamber (pheno-bubble, > 0.1 mm). On the other hand, small vesicle in groundmass (matrix-bubble, < 0.1 mm) is attributed to second nucleation in the conduit during the eruption. We performed quantitative comparison using pheno- and matrix-bubble number densities (PBND and MBND) for these two white pumice types. The correlation between PBND and MBND result in two regimes: (1) decompression-controlled regime, showing nearly constant-PBND correlation for TWP, and (2) phenobubble-controlled regime, showing steeply-decreasing PBND correlation for NTWP. In the first regime, MBNDs value varies dramatically, suggesting the variation of decompression rate by two to three orders of magnitudes. While in the second regime, the slight increase of MBNDs is considered as the effect of the decrease in PBND within the nearly constant decompression rate.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sahand Hajimirza ◽  
Helge M. Gonnermann ◽  
James E. Gardner

AbstractMagma from Plinian volcanic eruptions contains an extraordinarily large numbers of bubbles. Nucleation of those bubbles occurs because pressure decreases as magma rises to the surface. As a consequence, dissolved magmatic volatiles, such as water, become supersaturated and cause bubbles to nucleate. At the same time, diffusion of volatiles into existing bubbles reduces supersaturation, resulting in a dynamical feedback between rates of nucleation due to magma decompression and volatile diffusion. Because nucleation rate increases with supersaturation, bubble number density (BND) provides a proxy record of decompression rate, and hence the intensity of eruption dynamics. Using numerical modeling of bubble nucleation, we reconcile a long-standing discrepancy in decompression rate estimated from BND and independent geospeedometers. We demonstrate that BND provides a record of the time-averaged decompression rate that is consistent with independent geospeedometers, if bubble nucleation is heterogeneous and facilitated by magnetite crystals.


2020 ◽  
Vol 6 (39) ◽  
pp. eabb0413 ◽  
Author(s):  
Danilo Di Genova ◽  
Richard A. Brooker ◽  
Heidy M. Mader ◽  
James W. E. Drewitt ◽  
Alessandro Longo ◽  
...  

Although gas exsolution is a major driving force behind explosive volcanic eruptions, viscosity is critical in controlling the escape of bubbles and switching between explosive and effusive behavior. Temperature and composition control melt viscosity, but crystallization above a critical volume (>30 volume %) can lock up the magma, triggering an explosion. Here, we present an alternative to this well-established paradigm by showing how an unexpectedly small volume of nano-sized crystals can cause a disproportionate increase in magma viscosity. Our in situ observations on a basaltic melt, rheological measurements in an analog system, and modeling demonstrate how just a few volume % of nanolites results in a marked increase in viscosity above the critical value needed for explosive fragmentation, even for a low-viscosity melt. Images of nanolites from low-viscosity explosive eruptions and an experimentally produced basaltic pumice show syn-eruptive growth, possibly nucleating a high bubble number density.


2020 ◽  
Vol 10 (16) ◽  
pp. 5443
Author(s):  
Jinyeong Bak ◽  
Huiyung Kim ◽  
Jae Jun Jeong ◽  
Dongjin Euh ◽  
Byongjo Yun

In a multidimensional two-phase flow analysis, bubble size significantly affects interfacial transfer terms such as mass, momentum, and energy. With regard to bubbly flow, the application of a simple correlation-type bubble size model presents certain advantages, including short calculation times and ease of usage. In this study, we propose a semi-theoretical correlation developed from a steady state bubble number density transport equation for predicting the distribution of local bubble size using a computational fluid dynamics (CFD) code. The coefficients of the new correlation were determined using the local bubble parameters obtained on the basis of three existing vertical air-water experiments. Finally, these were implemented in commercial CFD code and evaluated against experimental data, which showed that the proposed correlation exhibits good prediction capability for forced convective air-water bubbly flows under low pressure conditions.


Geology ◽  
2020 ◽  
Vol 48 (10) ◽  
pp. 997-1001 ◽  
Author(s):  
Francisco Cáceres ◽  
Fabian B. Wadsworth ◽  
Bettina Scheu ◽  
Mathieu Colombier ◽  
Claudio Madonna ◽  
...  

Abstract Degassing dynamics play a crucial role in controlling the explosivity of magma at erupting volcanoes. Degassing of magmatic water typically involves bubble nucleation and growth, which drive magma ascent. Crystals suspended in magma may influence both nucleation and growth of bubbles. Micron- to centimeter-sized crystals can cause heterogeneous bubble nucleation and facilitate bubble coalescence. Nanometer-scale crystalline phases, so-called “nanolites”, are an underreported phenomenon in erupting magma and could exert a primary control on the eruptive style of silicic volcanoes. Yet the influence of nanolites on degassing processes remains wholly uninvestigated. In order to test the influence of nanolites on bubble nucleation and growth dynamics, we use an experimental approach to document how nanolites can increase the bubble number density and affect growth kinetics in a degassing nanolite-bearing silicic magma. We then examine a compilation of these values from natural volcanic rocks from explosive eruptions leading to the inference that some very high naturally occurring bubble number densities could be associated with the presence of magmatic nanolites. Finally, using a numerical magma ascent model, we show that for reasonable starting conditions for silicic eruptions, an increase in the resulting bubble number density associated with nanolites could push an eruption that would otherwise be effusive into the conditions required for explosive behavior.


Sign in / Sign up

Export Citation Format

Share Document