scholarly journals A new heat transfer model for flow boiling of refrigerants in micro-fin tubes

2018 ◽  
Vol 126 ◽  
pp. 1067-1078 ◽  
Author(s):  
Weiyu Tang ◽  
Wei Li
1998 ◽  
Vol 120 (1) ◽  
pp. 156-165 ◽  
Author(s):  
N. Kattan ◽  
J. R. Thome ◽  
D. Favrat

A new heat transfer model for intube flow boiling in horizontal plain tubes is proposed that incorporates the effects of local two-phase flow patterns, flow stratification, and partial dryout in annular flow. Significantly, the local peak in the heat transfer coefficient versus vapor quality can now be determined from the prediction of the location of onset of partial dryout in annular flow. The new method accurately predicts a large, new database of flow boiling data, and is particularly better than existing methods at high vapor qualities (x > 85 percent) and for stratified types of flows.


2020 ◽  
Vol 142 (8) ◽  
Author(s):  
Pratik S. Deokar ◽  
Lorenzo Cremaschi ◽  
Andrea A. M. Bigi

Abstract In air conditioning systems, lubricating oil leaves the compressor and circulates through the other system components. This lubricant acts as a contaminant affecting heat transfer in heat exchangers. The literature indicated that mixtures of refrigerants and nanolubricants, that is, nanoparticles dispersed in the lubricant oils, have potentials to augment heat transfer exchange effectiveness. However, the nanoparticle mechanisms leading to such heat transfer changes are still unclear and not well included in the models. In this work, an existing single-phase forced flow convective heat transfer model, originally developed for water-based nanofluids, was modified to include the effects of diffusion and mass balance of different shape nanoparticles within the laminar sublayer and turbulent layer of the flow. A new physics-based superposition heat transfer model for saturated two-phase flow boiling of refrigerant and nanolubricants was also developed by integrating the modified forced flow convective heat transfer model and a semi-empirical pool boiling model for nanolubricants. The new model included the several physical effects that influenced heat transfer, such as slip mechanisms at the nanoparticles and base fluid interface and its influence on the laminar sublayer thickness, momentum transfer from the nanoparticles to the growing bubbles, and formation of lubricant excess concentration at the tube surface and its influence on bubble growth and tube wetting. The new model was validated for single-phase convective heat transfer and two-phase flow boiling of refrigerant R410A with two nanolubricants, having nonspherical ZnO nanoparticles and spherical Al2O3 nanoparticles.


2002 ◽  
Vol 124 (6) ◽  
pp. 1131-1136 ◽  
Author(s):  
Anthony M. Jacobi ◽  
John R. Thome

Recent experimental studies of evaporation in microchannels have shown that local flow-boiling coefficients are almost independent of vapor quality, weakly dependent on mass flux, moderately dependent on evaporating pressure, and strongly dependent on heat flux. In a conventional (macrochannel) geometry, such trends suggest nucleate boiling as the dominant heat transfer mechanism. In this paper, we put forward a simple new heat transfer model based on the hypothesis that thin-film evaporation into elongated bubbles is the important heat transfer mechanism in these flows. The new model predicts the above trends and quantitatively predicts flow-boiling coefficients for experimental data with several fluids. The success of this new model supports the idea that thin-film evaporation into elongated bubbles is the important heat transfer mechanism in microchannel evaporation. The model provides a new tool for the study of such flows, assists in understanding the heat transfer behavior, and provides a framework for predicting heat transfer.


Sign in / Sign up

Export Citation Format

Share Document