thin film evaporation
Recently Published Documents


TOTAL DOCUMENTS

184
(FIVE YEARS 40)

H-INDEX

22
(FIVE YEARS 3)

2021 ◽  
Vol 11 (22) ◽  
pp. 10954
Author(s):  
Xiaoping Yang ◽  
Gaoxiang Wang ◽  
Cancan Zhang ◽  
Jie Liu ◽  
Jinjia Wei

To overcome the two-phase flow instability of traditional boiling heat dissipation technologies, a porous wick was used for liquid-vapor isolation, achieving efficient and stable boiling heat dissipation. A pump-assisted capillary phase-change loop with methanol as the working medium was established to study the effect of liquid-vapor pressure difference and heating power on its start-up and steady-state characteristics. The results indicated that the evaporator undergoes four heat transfer modes, including flooded, partially flooded, thin-film evaporation, and overheating. The thin-film evaporation mode was the most efficient with the shortest start-up period. In addition, heat transfer modes were determined by the liquid-vapor pressure difference and power. The heat transfer coefficient significantly improved and the thermal resistance was reduced by increasing liquid-vapor pressure as long as it did not exceed 8 kPa. However, when the liquid-vapor pressure exceeded 8 kPa, its influence on the heat transfer coefficient weakened. In addition, a two-dimensional heat transfer mode distribution diagram concerning both liquid-vapor pressure difference and power was drawn after a large number of experiments. During an engineering application, the liquid-vapor pressure difference can be controlled to maintain efficient thin-film evaporation in order to achieve the optimum heat dissipation effect.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012079
Author(s):  
Digvijay Shukla ◽  
Pradipta Kumar Panigrahi

Abstract Thin film evaporative cooling is one of the liquid cooling technologies, capable of removing high heat flux with lower junction temperature due to the utilization of latent heat of vaporization. To understand the various transport processes involved in vapour phase during thin film evaporation, evaporation from a heated well cavity of diameter 3 mm and height 2 mm is studied using Digital holographic interferometry technique. A flat disk-shaped vapour cloud is appeared for heated as well as not- heated well surface case. This signifies radial outward natural convection instead of pure diffusion. A higher vapour concentration is obtained at each time instants for heated surface case due to the higher evaporation rate as compared to non-heated, ambient case.


Author(s):  
Xiaoping Yang ◽  
Gaoxiang Wang ◽  
Cancan Zhang ◽  
Jie Liu ◽  
Jinjia Wei

To overcome the two-phase flow instability of traditional boiling heat dissipation technologies, a porous wick was used for liquid-vapor isolation, thus realizing efficient and stable boiling heat dissipation. A pump-assisted capillary phase-change loop with methanol as working medium was established to study the effect of liquid-vapor pressure difference and heating power on its start-up and steady-state characteristics. The results indicated that the evaporator undergoes four heat transfer modes including flooded, partial flooded, thin film evaporation and overheating. The thin film evaporation mode was the most efficient one with the shortest start-up period. Besides, the heat transfer modes were determined by liquid-vapor pressure difference and power. The heat transfer coefficient could be significantly improved and the thermal resistance could be reduced by increasing liquid-vapor pressure difference as long as it did not exceed 8 kPa. However, when the liquid-vapor pressure difference exceeded 8kPa, its influence on the heat transfer coefficient weakened. In addition, a two-dimensional heat transfer mode distribution diagram considering both liquid-vapor pressure difference and power was drawn through a great number of experiments. During engineering application, the liquid-vapor pressure difference can be controlled to maintain efficient thin film evaporation in order to achieve the optimum heat dissipation effect.


Author(s):  
Shahnawaz Ahmed ◽  
Manmohan Pandey ◽  
Masahiro Kawaji

Abstract Since its invention nearly five decades ago, the loop heat pipe has revolutionized every application requiring cooling or maintaining a constant temperature environment. In this article, its various designs aspects are explored, which include design of the evaporator, wick and selection of working fluid. Factors such as design guidelines and how they affect the physics of the overall system are surveyed. For the evaporator part, its various designs and their respective applications/operating ranges are reviewed. In the wick section, recent trends on its fabrication, and performance enhancement are shown. A special section on how the wick functions is added, with a focus on the study of liquid vapour meniscus using the thin-film evaporation theory. Attention is also given to the investigations on the various figures of merit used for the selection of working fluid. For the first time, these figures of merit are categorized with respect to the device physics they represent/simulate. In the end, this review article also touches upon the various creative designs and ideas used to enhance the loop heat pipe performance.


Author(s):  
Bingyao Lin ◽  
Nanxi Li ◽  
Shiyue Wang ◽  
Leren Tao ◽  
Guangming Xu ◽  
...  

Abstract In this paper, a thin film evaporation model that includes expressions for energy, mass and momentum conservation was established through the augmented Young-Laplace model. Based on this model, the effects of pore size and superheating on heat transfer during thin film evaporation were analyzed. The influence of the wick diameter of the loop heat pipe (LHP) on the critical heat flux of the evaporator is analyzed theoretically. The results show that pore size and superheating mainly influence evaporation through changes in the length of the transition film and intrinsic meniscus. The contribution of the transition film area is mainly reflected in the heat transfer coefficient, and the contribution of the intrinsic meniscus area is mainly apparent in the quantity of heat that is transferred. When an LHP evaporator is operating in a state of surface evaporation, a higher heat transfer coefficient can be achieved using a smaller pore size.


Sign in / Sign up

Export Citation Format

Share Document