Channel orientation effect on endwall heat transfer in rotating cooling passages with pin-fins

2019 ◽  
Vol 136 ◽  
pp. 1115-1126 ◽  
Author(s):  
Szu-Chi Huang ◽  
Chen-Chih Wang ◽  
Yao-Hsien Liu
Author(s):  
Balamurugan Srinivasan ◽  
Anand Dhamarla ◽  
Chandiran Jayamurugan ◽  
Amarnath Balu Rajan

The increasing demands of better efficiency of modern advanced gas turbine require higher turbine inlet temperatures, which gives great challenges to turbine blade designers. However, the temperature limits of turbine blade material are not high enough to ensure its survival in such incredible operating temperature. Hence, both internal and external cooling approaches have been developed and widely used in today’s turbine blade. To internal cooling problems, a variety of cooling enhancement approaches, such as impingement and turbulators, are employed in order to meet the different needs in leading, middle and trailing region. One of the most critical parts in turbine blade is trailing edge where it is hard to cool due to its narrow shape. Pin-fins are widely used to cool the trailing edge of rotor and stator blades of gas turbine engine. Pin-fins offer significant heat transfer enhancement, they are relatively easy to fabricate and offer structural support to the hollow trailing edge region. The flow physics in a pin-fin roughened channel is very complicated and three-dimensional. In this work, we have studied the effect of channel orientation on heat transfer in a rotating wedge-shaped cooling channel using numerical methods. Qiu [1] studied experimentally heat transfer effects of 5 different angles of wedge shaped channel orientation for the inlet Reynolds number (5100 to 21000) and rotational speed (zero to 1000 rpm), which results in the inlet Rotation number variation from 0 to 0.68. They observed that compared to the non-rotating condition, there is about 35% overall heat transfer enhancement under highest rotation number. The above said results are validated using current studies with Computational Fluid Dynamics (CFD) revealed that rotation increases significantly the heat transfer coefficient on the trailing surface and reduces the heat transfer coefficient on the leading surface. This is due to the higher velocities associated with the converging geometry near trailing surface.


2003 ◽  
Vol 125 (3) ◽  
pp. 555-563 ◽  
Author(s):  
Todd S. Griffith ◽  
Luai Al-Hadhrami ◽  
Je-Chin Han

As the world of research seeks ways of improving the efficiency of turbomachinery, attention has recently focused on a relatively new type of internal cooling channel geometry, the dimple. Preliminary investigations have shown that the dimple enhances heat transfer with minimal pressure loss. An investigation into determining the effect of rotation on heat transfer in a rectangular channel (aspect ratio=4:1) with dimples is detailed in this paper. The range of flow parameters includes Reynolds number Re=5000-40000, rotation number Ro=0.04-0.3 and inlet coolant-to-wall density ratio Δρ/ρ=0.122. Two different surface configurations are explored, including a smooth duct and dimpled duct with dimple depth-to-print diameter δ/Dp ratio of 0.3. A dimple surface density of 10.9 dimples/in2 was used for each of the principal surfaces (leading and trailing) with a total of 131 equally spaced hemispherical dimples per surface; the side surfaces are smooth. Two channel orientations of β=90 and 135 deg with respect to the plane of rotation are explored to determine channel orientation effect. Results show a definite channel orientation effect, with the trailing-edge channel enhancing heat transfer more than the orthogonal channel. Also, the dimpled channel behaves somewhat like a 45 deg angled rib channel, but with less spanwise variations in heat transfer.


Author(s):  
Todd S. Griffith ◽  
Luai Al-Hadhrami ◽  
Je-Chin Han

As the world of research seeks ways of improving the efficiency of turbomachinery, attention has recently focused on a relatively new type of internal cooling channel geometry, the dimple. Preliminary investigations have shown that the dimple enhances heat transfer with minimal pressure loss. An investigation into determining the effect of rotation on heat transfer in a rectangular channel (aspect ratio = 4:1) with dimples is detailed in this paper. The range of flow parameters includes Reynolds number (Re = 5000–40000), rotation number (Ro = 0.04–0.3) and inlet coolant-to-wall density ratio (Δρ/ρ = 0.122). Two different surface configurations are explored, including a smooth duct and dimpled duct with dimple depth-to-print diameter (δ/Dp) ratio of 0.3. A dimple surface density of 10.9 dimples/in2 was used for each of the principal surfaces (leading and trailing) with a total of 131 equally spaced hemispherical dimples per surface; the side surfaces are smooth. Two channel orientations of β = 90° and 135° with respect to the plane of rotation are explored to determine channel orientation effect. Results show a definite channel orientation effect, with the trailing-edge channel enhancing heat transfer more than the orthogonal channel. Also, the dimpled channel behaves somewhat like a 45° angled rib channel, but with less spanwise variations in heat transfer.


Author(s):  
Lu Qiu ◽  
Hongwu Deng ◽  
Zhi Tao

Experiments are preformed to investigate the effect of channel orientation in a rotating wedge-shaped cooling channel with lateral flow extraction. The test section bears the following characteristics. Staggered ribs are arranged in the inner wide region of the channel, while the pin-fins are located in the outer narrow region. The regionally averaged heat transfer coefficients are obtained to study the characteristics of heat transfer variations in this channel under rotating and non-rotating conditions. The experiments are conducted under four inlet Reynolds numbers (6100, 15000, 25100, 33000), five rotational speeds (0, 300, 500, 800, 1000rpm) and three channel orientations (90°, 135°, 180° angle from the channel symmetry plan to the rotating plan). The inlet rotation number ranges from zero to 0.62. Finally, the experimental data demonstrates that the streamwise heat transfer variations under rotating condition are strongly affected by channel orientation in this configuration. Furthermore, compared with the data under two channel orientation 90° and 180° (the direction of rotation is perpendicular and parallel to the channel symmetry plan), the heat transfer characteristics under 135° configuration, which is regarded as the typical trailing edge orientation, approaches to the 180° one in this rotating channel. An evident critical rotation number, after which the nature of heat transfer changes abruptly, exists under 180° and 135° configuration but not under 90° one.


2011 ◽  
Vol 42 (1) ◽  
pp. 65-81 ◽  
Author(s):  
Gongnan Xie ◽  
Bengt Sunden ◽  
Lieke Wang ◽  
Esa Utriainien
Keyword(s):  
Pin Fins ◽  

Author(s):  
Yusuke Motoda ◽  
Kenichiro Takeishi ◽  
Yutaka Oda ◽  
Yoshiaki Miyake
Keyword(s):  

Author(s):  
Michael E. Lyall ◽  
Alan A. Thrift ◽  
Atul Kohli ◽  
Karen A. Thole

The performance of many engineering devices from power electronics to gas turbines is limited by thermal management. Heat transfer augmentation in internal flows is commonly achieved through the use of pin fins, which increase both surface area and turbulence. The present research is focused on internal cooling of turbine airfoils using a single row of circular pin fins that is oriented perpendicular to the flow. Low aspect ratio pin fins were studied whereby the channel height to pin diameter was unity. A number of spanwise spacings were investigated for a Reynolds number range between 5000 to 30,000. Both pressure drop and spatially-resolved heat transfer measurements were taken. The heat transfer measurements were made on the endwall of the pin fin array using infrared thermography and on the pin surface using discrete thermocouples. The results show that the heat transfer augmentation relative to open channel flow is the highest for smallest spanwise spacings and lowest Reynolds numbers. The results also indicate that the pin fin heat transfer is higher than the endwall heat transfer.


Sign in / Sign up

Export Citation Format

Share Document