Heat Transfer in Rotating Rectangular Cooling Channels (AR=4) With Dimples

Author(s):  
Todd S. Griffith ◽  
Luai Al-Hadhrami ◽  
Je-Chin Han

As the world of research seeks ways of improving the efficiency of turbomachinery, attention has recently focused on a relatively new type of internal cooling channel geometry, the dimple. Preliminary investigations have shown that the dimple enhances heat transfer with minimal pressure loss. An investigation into determining the effect of rotation on heat transfer in a rectangular channel (aspect ratio = 4:1) with dimples is detailed in this paper. The range of flow parameters includes Reynolds number (Re = 5000–40000), rotation number (Ro = 0.04–0.3) and inlet coolant-to-wall density ratio (Δρ/ρ = 0.122). Two different surface configurations are explored, including a smooth duct and dimpled duct with dimple depth-to-print diameter (δ/Dp) ratio of 0.3. A dimple surface density of 10.9 dimples/in2 was used for each of the principal surfaces (leading and trailing) with a total of 131 equally spaced hemispherical dimples per surface; the side surfaces are smooth. Two channel orientations of β = 90° and 135° with respect to the plane of rotation are explored to determine channel orientation effect. Results show a definite channel orientation effect, with the trailing-edge channel enhancing heat transfer more than the orthogonal channel. Also, the dimpled channel behaves somewhat like a 45° angled rib channel, but with less spanwise variations in heat transfer.

2003 ◽  
Vol 125 (3) ◽  
pp. 555-563 ◽  
Author(s):  
Todd S. Griffith ◽  
Luai Al-Hadhrami ◽  
Je-Chin Han

As the world of research seeks ways of improving the efficiency of turbomachinery, attention has recently focused on a relatively new type of internal cooling channel geometry, the dimple. Preliminary investigations have shown that the dimple enhances heat transfer with minimal pressure loss. An investigation into determining the effect of rotation on heat transfer in a rectangular channel (aspect ratio=4:1) with dimples is detailed in this paper. The range of flow parameters includes Reynolds number Re=5000-40000, rotation number Ro=0.04-0.3 and inlet coolant-to-wall density ratio Δρ/ρ=0.122. Two different surface configurations are explored, including a smooth duct and dimpled duct with dimple depth-to-print diameter δ/Dp ratio of 0.3. A dimple surface density of 10.9 dimples/in2 was used for each of the principal surfaces (leading and trailing) with a total of 131 equally spaced hemispherical dimples per surface; the side surfaces are smooth. Two channel orientations of β=90 and 135 deg with respect to the plane of rotation are explored to determine channel orientation effect. Results show a definite channel orientation effect, with the trailing-edge channel enhancing heat transfer more than the orthogonal channel. Also, the dimpled channel behaves somewhat like a 45 deg angled rib channel, but with less spanwise variations in heat transfer.


Author(s):  
Lesley M. Wright ◽  
Eungsuk Lee ◽  
Je-Chin Han

The effect of entrance geometry on the heat transfer in rotating, narrow rectangular cooling channels is investigated in this study. Both smooth channels and channels with angled ribs are considered with three different entrance conditions: fully developed, sudden contraction, partial sudden contraction. The rectangular channel has as aspect ratio of 4:1, and it is oriented at 135° with respect to the plane of rotation. In the test section with angled ribs, the ribs are angled at 45° to the mainstream flow. The rib height-to-hydraulic diameter ratio (e/Dh) is 0.078, and the rib pitch-to-height ratio (P/e) is 10. The range of flow parameters includes Reynolds number (Re = 5000–40000), rotation number (Ro = 0.0–0.302), and inlet coolant-to-wall density ratio (Δρ/ρ = 0.12). The heat transfer at the entrance of the heated portion of the smooth channel is significantly enhanced with the sudden contraction and partial sudden contraction entrances. In the smooth rotating channels, the effect of the entrance geometry is also present; however, as the rotation number increases, the effect of the entrance geometry decreases. It was also found in this study that the sudden and partial sudden contraction entrances provide higher heat transfer enhancement than the fully developed entrance through the first 3 to 4 hydraulic diameters of the channels with angled ribs. Again, the effect of the entrance geometry is greater in the stationary channels with angled ribs than the rotating channels with ribs. In both stationary and rotating channels, the influence of the entrance geometry on the heat transfer is more apparent in the smooth channels than in the ribbed channels.


2005 ◽  
Vol 127 (4) ◽  
pp. 378-387 ◽  
Author(s):  
Lesley M. Wright ◽  
Wen-Lung Fu ◽  
Je-Chin Han

The effect of entrance geometry on the heat transfer in rotating, narrow rectangular cooling channels is investigated in this study. Both smooth channels and channels with angled ribs are considered with three different entrance conditions: fully developed, sudden contraction, and partial sudden contraction. The rectangular channel has as aspect ratio of 4:1, and it is oriented at 135° with respect to the plane of rotation. In the test section with angled ribs, the ribs are angled at 45° to the mainstream flow. The rib height-to-hydraulic diameter ratio e/Dh is 0.078, and the rib pitch-to-height ratio P/e is 10. The range of flow parameters includes Reynolds number (Re=5000–40,000), rotation number (Ro=0.0–0.302), and inlet coolant-to-wall density ratio (Δρ/ρ=0.12). The heat transfer at the entrance of the heated portion of the smooth channel is significantly enhanced with the sudden contraction and partial sudden contraction entrances. In the smooth rotating channels, the effect of the entrance geometry is also present; however, as the rotation number increases, the effect of the entrance geometry decreases. It was also found in this study that the sudden and partial sudden contraction entrances provide higher heat transfer enhancement than the fully developed entrance through the first three to four hydraulic diameters of the channels with angled ribs. Again, the effect of the entrance geometry is greater in the stationary channels with angled ribs than the rotating channels with ribs. In both stationary and rotating channels, the influence of the entrance geometry on the heat transfer is more apparent in the smooth channels than in the ribbed channels.


2002 ◽  
Vol 124 (4) ◽  
pp. 617-625 ◽  
Author(s):  
Todd S. Griffith ◽  
Luai Al-Hadhrami ◽  
Je-Chin Han

An investigation into determining the effect of rotation on heat transfer in a rib-roughened rectangular channel with aspect ratio of 4:1 is detailed in this paper. A broad range of flow parameters have been selected including Reynolds number (Re=5000–40000), rotation number (Ro=0.04–0.3) and coolant to wall density ratio at the inlet Δρ/ρi=0.122. The rib turbulators, attached to the leading and trailing surface, are oriented at an angle α=45deg to the direction of flow. The effect of channel orientations of β=90 deg and 135 deg with respect to the plane of rotation is also investigated. Results show that the narrow rectangular passage exhibits a much higher heat transfer enhancement for the ribbed surface than the square and 2:1 duct previously investigated. Also, duct orientation significantly affects the leading and side surfaces, yet does not have much affect on the trailing surfaces for both smooth and ribbed surfaces. Furthermore, spanwise heat transfer distributions exist across the leading and trailing surfaces and are accentuated by the use of angled ribs. The smooth and ribbed case trailing surfaces and smooth case side surfaces exhibited a strong dependence on rotation number.


2003 ◽  
Vol 125 (2) ◽  
pp. 232-242 ◽  
Author(s):  
Luai AL-Hadhrami ◽  
Todd Griffith ◽  
Je-Chin Han

An experimental study was made to obtain heat transfer data for a two-pass rectangular channel (aspect ratio=2:1) with smooth and ribbed surfaces for two channel orientations (90 deg and 135 deg with respect to the plane of rotation). The V-shaped ribs are placed on the leading and trailing surfaces. Five different arrangements of 45 deg V-shaped ribs are studied. The Reynolds number and rotation number ranges are 5000–40000, and 0.0–0.21, respectively. The rib height to hydraulic diameter ratio (e/D) is 0.094; the rib pitch-to-height ratio (P/e) is 10; and the inlet coolant-to-wall density ratio (Δρ/ρ) is maintained around 0.115 for every test. The results show that the rotation-induced secondary flow enhances the heat transfer of the first pass trailing surface and second pass leading surface. However, the first pass leading and the second pass trailing surfaces show a decrease in heat transfer with rotation. The results also show that parallel 45 deg V-shaped rib arrangements produce better heat transfer augmentation than inverted 45 deg V-shaped ribs and crossed 45 deg V-shaped ribs, and a 90 deg channel orientation produces greater rotating effect on heat transfer than a 135 deg orientation.


Author(s):  
Lesley M. Wright ◽  
Wen-Lung Fu ◽  
Je-Chin Han

An experimental study was performed to measure the heat transfer distributions and frictional losses in rotating ribbed channels with an aspect ratio of 4:1. Angled, discrete angled, V-shaped, and discrete V-shaped ribs were investigated, as well as the newly proposed W-shaped and discrete W-shaped ribs. In all cases, the ribs are placed on both the leading and trailing surfaces of the channel, and they are oriented 45° to the mainstream flow. The rib height-to-hydraulic diameter ratio (e/D) is 0.078, and the rib pitch-to-height ratio (P/e) is 10. The channel orientation with respect to the direction of rotation is 135°. The range of flow parameters includes Reynolds number (Re = 10000–40000), rotation number (Ro = 0.0–0.15), and inlet coolant-to-wall density ratio (Δρ/ρ = 0.12). Both heat transfer and pressure measurements were taken, so the overall performance of each rib configuration could be evaluated. It was determined that the W-shaped and discrete W-shaped ribs had the superior heat transfer performance in both non-rotating and rotating channels. However, these two configurations also incurred the greatest frictional losses while the discrete V-shaped and discrete angled ribs resulted in the lowest pressure drop. Based on the heat transfer enhancement and the pressure drop penalty, the discrete V-shaped ribs and the discrete W-shaped ribs exhibit the best overall thermal performance in both rotating and non-rotating channels. These configurations are followed closely by the W-shaped ribs. The angled rib configuration resulted in the worst performance of the six configurations of the present study.


2004 ◽  
Vol 126 (4) ◽  
pp. 604-614 ◽  
Author(s):  
Lesley M. Wright ◽  
Wen-Lung Fu ◽  
Je-Chin Han

An experimental study was performed to measure the heat transfer distributions and frictional losses in rotating ribbed channels with an aspect ratio of 4:1. Angled, discrete angled, V-shaped, and discrete V-shaped ribs were investigated, as well as the newly proposed W-shaped and discrete W-shaped ribs. In all cases, the ribs are placed on both the leading and trailing surfaces of the channel, and they are oriented 45 deg to the mainstream flow. The rib height-to-hydraulic diameter ratio e/D is 0.078, and the rib pitch-to-height ratio P/e is 10. The channel orientation with respect to the direction of rotation is 135 deg. The range of flow parameters includes Reynolds number (Re=10,000–40,000), rotation number Ro=0.0-0.15, and inlet coolant-to-wall density ratio (Δρ/ρ=0.12). Both heat transfer and pressure measurements were taken, so the overall performance of each rib configuration could be evaluated. It was determined that the W-shaped and discrete W-shaped ribs had the superior heat transfer performance in both nonrotating and rotating channels. However, these two configurations also incurred the greatest frictional losses while the discrete V-shaped and discrete angled ribs resulted in the lowest pressure drop. Based on the heat transfer enhancement and the pressure drop penalty, the discrete V-shaped ribs and the discrete W-shaped ribs exhibit the best overall thermal performance in both rotating and nonrotating channels. These configurations are followed closely by the W-shaped ribs. The angled rib configuration resulted in the worst performance of the six configurations of the present study.


2002 ◽  
Vol 124 (2) ◽  
pp. 251-259 ◽  
Author(s):  
Gm S. Azad ◽  
Mohammad J. Uddin ◽  
Je-Chin Han ◽  
Hee-Koo Moon ◽  
Boris Glezer

Experimental heat transfer results are presented in a two-pass rectangular channel (aspect ratio=2:1) with smooth and ribbed surfaces for two channel orientations (90 and 135 deg to the direction of rotational plane). The rib turbulators are placed on the leading and trailing sides at an angle 45 deg to the main stream flow. Both 45-deg parallel and cross rib orientations are studied. The results are presented for stationary and rotating cases at three different Reynolds numbers of 5000, 10,000, and 25,000, the corresponding rotation numbers are 0.21, 0.11, and 0.04. The rib height to hydraulic diameter ratio (e/D) is 0.094; the rib pitch-to-height ratio (P/e) is 10 and the inlet wall-to-coolant density ratio (Δρ/ρ) is maintained at 0.115 for all surfaces in the channel. Results show that the rotating ribbed wall heat transfer coefficients increase by a factor of 2 to 3 over the rotating smooth wall results. The heat transfer from the first pass trailing and second pass leading surfaces are enhanced by rotation. However, the first pass leading and the second pass trailing sides show a decrease in heat transfer with rotation. The result show that 45-deg parallel ribs produce a better heat transfer augmentation than 45-deg cross ribs, and a 90-deg channel orientation produces higher heat transfer effect over a 135-deg orientation.


2005 ◽  
Vol 127 (4) ◽  
pp. 659-667 ◽  
Author(s):  
A. K. Sleiti ◽  
J. S. Kapat

Prediction of flow field and heat transfer of high rotation numbers and density ratio flow in a square internal cooling channels of turbine blades with U-turn as tested by Wagner et al. (ASME J. Turbomach., 113, pp. 42–51, 1991) is the main focus of this study. Rotation, buoyancy, and strong curvature affect the flow within these channels. Due to the fact that RSM turbulence model can respond to the effects of rotation, streamline curvature and anisotropy without the need for explicit modeling, it is employed for this study as it showed improved prediction compared to isotropic two-equation models. The near wall region was modeled using enhanced wall treatment approach. The Reynolds Stress Model (RSM) was validated against available experimental data (which are primarily at low rotation and buoyancy numbers). The model was then used for cases with high rotation numbers (as much as 1.29) and high-density ratios (up to 0.4). Particular attention is given to how secondary flow, velocity and temperature profiles, turbulence intensity, and Nusselt number area affected by Coriolis and buoyancy/centrifugal forces caused by high levels of rotation and buoyancy in the immediate vicinity of the bend. The results showed that four-side-average Nu, similar to low Ro cases, increases linearly by increasing rotation number and, unlike low Ro cases, decreases slightly by increasing density ratio.


Author(s):  
Yao-Hsien Liu ◽  
Lesley M. Wright ◽  
Wen-Lung Fu ◽  
Je-Chin Han

Rib turbulators are commonly used to enhance the heat transfer within internal cooling passages of advanced gas turbine blades. Many factors affect the thermal performance of a cooling channel with ribs. This study experimentally investigates the effect of rib spacing on the heat transfer enhancement, pressure penalty, and thus the overall thermal performance in both rotating and non-rotating rectangular, cooling channels. In the 1:2 rectangular channels, 45° angled ribs are placed on the leading and trailing surfaces. The pitch of the ribs varies, so rib pitch-to-height (P/e) ratios of 10, 7.5, 5, and 3 are considered. Square ribs with a 1.59 mm × 1.59 mm cross-section are used for all spacings, so the height-to-hydraulic diameter (e/Dh) ratio remains constant at 0.094. With a constant rotational speed of 550 rpm and the Reynolds number ranging from 5000 to 40000, the rotation number in turn varies from 0.2 to 0.02. Because the skewed turbulators induce secondary flow along the length of the rib, the very close rib spacing of P/e = 3, has the best thermal performance in both rotating and non-rotating channels. This close spacing yields the greatest heat transfer enhancement, while the P/e = 5 spacing has the greatest pressure penalty. In addition, the effect of rotation is more pronounced in the channel with the rib spacing of 3. As more ribs are added, the channel is approaching a smooth channel, and the strength of the rotation induced vortices increases.


Sign in / Sign up

Export Citation Format

Share Document