Analytical and numerical determination of the heat transfer coefficient between scrap and hot metal based on small-scale experiments

Author(s):  
Florian Markus Penz ◽  
Roberto Parreiras Tavares ◽  
Christian Weiss ◽  
Johannes Schenk ◽  
Rainer Ammer ◽  
...  
Solar Energy ◽  
2018 ◽  
Vol 162 ◽  
pp. 317-329 ◽  
Author(s):  
Antonio L. Avila-Marin ◽  
Cyril Caliot ◽  
Gilles Flamant ◽  
Monica Alvarez de Lara ◽  
Jesús Fernandez-Reche

Energy ◽  
2019 ◽  
Vol 175 ◽  
pp. 978-985 ◽  
Author(s):  
İlhan Ceylan ◽  
Sezayi Yilmaz ◽  
Özgür İnanç ◽  
Alper Ergün ◽  
Ali Etem Gürel ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 704
Author(s):  
Magdalena Jaremkiewicz ◽  
Jan Taler

This paper proposes an effective method for determining thermal stresses in structural elements with a three-dimensional transient temperature field. This is the situation in the case of pressure elements of complex shapes. When the thermal stresses are determined by the finite element method (FEM), the temperature of the fluid and the heat transfer coefficient on the internal surface must be known. Both values are very difficult to determine under industrial conditions. In this paper, an inverse space marching method was proposed for the determination of the heat transfer coefficient on the active surface of the thick-walled plate. The temperature and heat flux on the exposed surface were obtained by measuring the unsteady temperature in a small region on the insulated external surface of a pressure component that is easily accessible. Three different procedures for the determination of the heat transfer coefficient on the water-spray surface were presented, with the division of the plate into three or four finite volumes in the normal direction to the plate surface. Calculation and experimental tests were carried out in order to validate the method. The results of the measurements and calculations agreed very well. The computer calculation time is short, so the technique can be used for online stress determination. The proposed method can be applied to monitor thermal stresses in the components of the power unit in thermal power plants, both conventional and nuclear.


2013 ◽  
Vol 91 (12) ◽  
pp. 1034-1043 ◽  
Author(s):  
Ali Fguiri ◽  
Naouel Daouas ◽  
M-Sassi Radhouani ◽  
Habib Ben Aissia

The parallel hot wire technique is considered an effective and accurate means of experimental measurement of thermal conductivity. However, the assumptions of infinite medium and ideal infinitely thin and long heat source lead to some restrictions in the applicability of this technique. To make an effective experiment design, a numerical analysis should be carried out a priori, which requires a precise specification of the heating source strength and the heat transfer coefficient on the external surface. In this work, a more accurate physical and mathematical modeling of an experimental setup based on the parallel hot wire method is considered to estimate the two above-mentioned parameters from noisy temperature histories measured inside the material. Based on a sensitivity analysis, the heating source strength is estimated first using early time measurements. With such estimated value, determination of the heat transfer coefficient using temperatures measured at later times is then considered. The Levenberg–Marquardt (LM) method is successfully applied using a single experiment for the inverse solution of the two present parameter estimation problems. Estimates of this gradient-based deterministic method are validated with a stochastic method (Kalman filter). The effects of the measurement location, the heating duration, the measurement time step, and the LM parameter on the estimates and their associated confidence bounds are investigated. Used in the traditional fitting procedure of the parallel hot wire technique, the estimated heating source power provides a reasonable agreement between fitted and exact values of the thermal conductivity and the thermal diffusivity.


2012 ◽  
Vol 134 (8) ◽  
Author(s):  
Mehmet Arik ◽  
Tunc Icoz

Synthetic jets are piezo-driven, small-scale, pulsating devices capable of producing highly turbulent jets formed by periodic entrainment and expulsion of the fluid in which they are embedded. The compactness of these devices accompanied by high air velocities provides an exciting opportunity to significantly reduce the size of thermal management systems in electronic packages. A number of researchers have shown the implementations of synthetic jets on heat transfer applications; however, there exists no correlation to analytically predict the heat transfer coefficient for such applications. A closed form correlation was developed to predict the heat transfer coefficient as a function of jet geometry, position, and operating conditions for impinging flow based on experimental data. The proposed correlation was shown to predict the synthetic jet impingement heat transfer within 25% accuracy for a wide range of operating conditions and geometrical variables.


Sign in / Sign up

Export Citation Format

Share Document