computer calculation
Recently Published Documents


TOTAL DOCUMENTS

355
(FIVE YEARS 35)

H-INDEX

28
(FIVE YEARS 1)

Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 300
Author(s):  
Izabela Kurzydym ◽  
Izabela Czekaj

In the present study we propose a more promising catalyst for the deNOx process to eliminate harmful nitrogen oxides from the environment. The study was performed with a computer calculation using density functional theory (DFT) based on an ab initio method. Two zeolite catalysts, FAU and MFI, were selected with additional Cu–O–Zn bimetallic dimer adsorbed inside the pores of both zeolites. Based on the analysis of preliminary studies, the most probable way of co-adsorption of nitric oxide and ammonia was selected, which became the initial configuration for the reaction mechanism. Two types of mechanisms were proposed: with hydroxyl groups on a bridged position of the dimer or a hydroxyl group on one of the metal atoms of the dimer. Based on the results, it was determined that the FAU zeolite with a bimetallic dimer and an OH group on the zinc atom was the most efficient configuration with a relatively low energy barrier. The real advantage of the Cu–Zn system over FAU and MFI in hydrothermal conditions has been demonstrated in comparison to a conventional Cu–Cu catalyst.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 4021
Author(s):  
Hiroyuki Watanabe ◽  
Kazuo Tanaka ◽  
Yoshiki Chujo

We report the synthesis and absorption properties of homopolymers consisting of 1,3,4,6,9b-pentaazaphenalene (5AP). Oxidative polymerization in the Scholl reaction was accomplished, and various lengths of homopolymers can be isolated. It should be noted that we scarcely observed the generation of structural isomers at the connecting points, which is often observed in this type of reaction. Therefore, we were able to evaluate electronic structures of the synthesized homopolymers. In addition, it was observed that absorption bands were obtained in the longer wavelength region than the monomer. The computer calculation suggests that the highest occupied molecular orbital (HOMO) energy levels could be lowered by electronic interaction through spatially-separated HOMOs of 5AP. Moreover, we can evaluate the extension of the conjugated system through the meta-substituted skeleton and distance dependency of the main-chain conjugation.


2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Ihor Karkhut ◽  
◽  
Josyp Luchko ◽  
Vladyslav Kirichok

The article describes the current state and the level of research of annular cross-sections of structures of energy facilities operating under conditions of thermal and force effects. The results of a numerical experiment to study the deformability and crack resistance of annular сross-sections and their comparison with the results of testing physical models of fragments of reinforced concrete chimneys are presented. It is shown that at the modern level of development of the mathematical apparatus and computer calculation programs, using the deformation model, the deviation does not exceed 20%. The described research results of other authors and this work confirm the possibility of replacing cost and long-term field tests with numerical experiments.


Author(s):  
Y. Nikulina

Beams of a trapezoidal cross-section with a wide upper edge with prestressed reinforcement combine positive qualities in terms of strength, crack resistance, deformability and resource saving, which allows them to cover significant spans of multi-storey buildings. To develop a method for calculating the moment of cracking in these structures, a nonlinear deformation model was adopted, which includes equilibrium equations, conditions for the linear distribution of relative deformations along the height of the element section, and refined deformation diagrams of concrete and reinforcement. Concrete state diagrams are assumed to be nonlinear without a falling branch. To describe the deformation diagrams of high-strength and conventional reinforcement, a universal dependence is adopted, consisting of one linear and two nonlinear equations, in which the calculation of individual parameters is performed using different formulas. For the initial stage of the crack formation process, a design scheme is presented, in accordance with which the necessary equations and ratios are drawn up in relation to the considered prestressed reinforced concrete beam of a trapezoidal cross-section. The purpose of the study, in addition to developing a calculation methodology, was also the development of an algorithm and a computer calculation program. To obtain and analyze the results, a numerical experiment was carried out, the results of which are presented in tabular form. Due to the fact that the calculation method was built without involving empirical dependencies, the possibility of its application to determine the crack resistance of prestressed reinforced concrete beams of trapezoidal cross-section for any class of concrete and reinforcement was confirmed.


2021 ◽  
pp. 154-156
Author(s):  
Yu.M. Marchuk ◽  
Yu.S. Kulyk ◽  
V.Е. Moiseenko

Computer calculation of rate coefficient for binary collision i <σix> as a function of temperature is presented, and the Maxwell electron velocity distribution function is chosen. The finite elements of the fifth order made it possible to significantly speed up the process of calculation i <σix>. The result of the approximation is a smooth function and the values of this function, its first and second derivatives, have no jumps at the mesh nodes and the accuracy of calculation is within the limits of statistical errors for the source data. These advantages and the results will be used in future tasks.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4309
Author(s):  
Malwina Gabryel-Skrodzka ◽  
Martyna Nowak ◽  
Klaudia Stachowiak ◽  
Michal Zabiszak ◽  
Kazuma Ogawa ◽  
...  

The influence of pH on the complex formation of phosphoethanolamine and pyrimidine nucleosides (uridine, cytidine and thymidine) with copper(II) ions was studied. All investigations were performed in aqueous solution. The overall stability constants of the complexes and non-covalent compounds were obtained using the potentiometric method with computer calculation of the data. Moreover, equilibrium constants of the reaction were determined. The mode of coordination was obtained using spectroscopic methods. Analysis of the potentiometric and spectroscopic data confirmed the involvement and effectiveness of phosphate groups in species formation as well as the influence of pH on the mode of coordination of the investigated biomaterials. In the next step, studied complexes will be applied as potential biomaterials with biological applications.


Vestnik MGSU ◽  
2021 ◽  
pp. 997-1005
Author(s):  
Linur R. Gimranov ◽  
Alsou E. Fattakhova

Introduction. Steel-reinforced concrete floors with profiled decking are most often used in steel frame buildings. The joint work of the floor slab and tertiary beam is ensured by shear studs. The article discusses a shear studs stress determining method from horizontal load. Studs are placed along the slab’s perimeter. The method based on the bolts’ group calculation analogy. Materials and methods. Based on the bolts group calculation design expressions were derived to determine the force in shear studs. To determine the obtained values reliability a finite element calculation was performed using the Lira-CAD software package. Different aspect ratios slabs samples were considered. The solution’s convergence was determined by various methods for a plate with 0.6 × 0.6 m dimensions with a small number of studs, after which the proposed solution convergence was studied for real dimensions of plates with a large number of flexible stops. Results. The resulting formula allows determining the stress in each flexible stop, in particular in the most loaded corner studs. The computer calculation was performed for the proposed method clarity and using possibility. The method’s use restriction was determined. In addition, the shear studs’ geometric characteristic’s definition explanations are given. Conclusions. The proposed calculation method allows to determinate any structural section’s shear stud’s stress. Therefore, it allows to choose stud’s optimal cross-section area or check its bearing capacity in the existing buildings and structures floors. Moreover, the stress value allows to determine the stud’s and a whole slab’s deformations.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 812
Author(s):  
Wei Fu ◽  
Shuang Yu ◽  
Xin Wang

In the framework of evidence theory, one of the open and crucial issues is how to determine the basic probability assignment (BPA), which is directly related to whether the decision result is correct. This paper proposes a novel method for obtaining BPA based on Adaboost. The method uses training data to generate multiple strong classifiers for each attribute model, which is used to determine the BPA of the singleton proposition since the weights of classification provide necessary information for fundamental hypotheses. The BPA of the composite proposition is quantified by calculating the area ratio of the singleton proposition’s intersection region. The recursive formula of the area ratio of the intersection region is proposed, which is very useful for computer calculation. Finally, BPAs are combined by Dempster’s rule of combination. Using the proposed method to classify the Iris dataset, the experiment concludes that the total recognition rate is 96.53% and the classification accuracy is 90% when the training percentage is 10%. For the other datasets, the experiment results also show that the proposed method is reasonable and effective, and the proposed method performs well in the case of insufficient samples.


2021 ◽  
Vol 887 ◽  
pp. 665-671
Author(s):  
N.I. Karpenko ◽  
S.N. Karpenko ◽  
D.Z. Kadiev ◽  
G.A. Moiseenko

The use of the nonlinear deformation model in computer calculation methods involves the use of time-consuming step-iteration methods for solving systems of resolving equations with problems of convergence. To eliminate these difficulties, the physical relations of the deformation model are established in finite increments. The article considers the construction of such a model in finite increments as applied to the calculation of the core reinforced-concrete structures in the overall case of oblique bending and oblique eccentric compression or tension, taking into account the action by the cross sections of low subzero temperatures.


Sign in / Sign up

Export Citation Format

Share Document