Effect of fractional parameter on thermoelastic half-space subjected to a moving heat source

Author(s):  
Eman M. Hussein
1988 ◽  
Vol 55 (1) ◽  
pp. 87-92 ◽  
Author(s):  
M. D. Bryant

A method is developed for obtaining fundamental thermal and thermoelastic solutions for thermal distributions moving over the surface of an elastic half space. This method uses the concept of a moving temperature wave along with a novel form of an exponential Fourier transform. The technique is developed and then demonstrated on the example of a moving heat source. Exact results are matched with results from Carslaw and Jaeger (1959) and Barber (1984).


1965 ◽  
Vol 87 (3) ◽  
pp. 729-734 ◽  
Author(s):  
F. F. Ling ◽  
V. C. Mow

A solution of the normal displacement of the elastic half-space under an arbitrarily distributed fast-moving heat source of constant velocity within the two-dimensional quasi-static, uncoupled thermoelasticity theory is presented. The surface of the half-space is allowed to dissipate heat by convection. Moreover, an example associated with the problem of elastohydrodynamics is given.


2011 ◽  
Vol 133 (6) ◽  
Author(s):  
Mohsen Akbari ◽  
David Sinton ◽  
Majid Bahrami

Fundamental problem of heat transfer within a half-space due to a moving heat source of hyperelliptical geometry is studied in this work. The considered hyperelliptical geometry family covers a wide range of heat source shapes, including star-shaped, rhombic, elliptical, rectangular with round corners, rectangular, circular, and square. The effects of the heat source speed, aspect ratio, corners, and orientation are investigated using the general solution of a moving point source on a half-space and superposition. Selecting the square root of the heat source area as the characteristics length scale, it is shown that the maximum temperature within the half-space is a function of the heat source speed (Peclet number) and its aspect ratio. It is observed that the details of the exact heat source shape have negligible effect on the maximum temperature within the half-space. New general compact relationships are introduced that can predict the maximum temperature within the half-space with reasonable accuracy. The validity of the suggested relationships is examined by available experimental and numerical data for the grinding process, for medium Peclet numbers. For ultrafast heat sources, an independent experimental study is performed using a commercial CO2 laser system. The measured depth of the engraved grooves is successfully predicted by the proposed relationships.


Sign in / Sign up

Export Citation Format

Share Document