thermoelasticity theory
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 27)

H-INDEX

17
(FIVE YEARS 3)

Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 9
Author(s):  
Ashraf M. Zenkour ◽  
Daoud S. Mashat ◽  
Ashraf M. Allehaibi

The current article introduces the thermoelastic coupled response of an unbounded solid with a cylindrical hole under a traveling heat source and harmonically altering heat. A refined dual-phase-lag thermoelasticity theory is used for this purpose. A generalized thermoelastic coupled solution is developed by using Laplace’s transforms technique. Field quantities are graphically displayed and discussed to illustrate the effects of heat source, phase-lag parameters, and the angular frequency of thermal vibration on the field quantities. Some comparisons are made with and without the inclusion of a moving heat source. The outcomes described here using the refined dual-phase-lag thermoelasticity theory are the most accurate and are provided as benchmarks for other researchers.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
F. S. Bayones ◽  
S. M. Abo-Dahab ◽  
A. M. Abd-Alla ◽  
S. H. Elhag ◽  
A. A. Kilany ◽  
...  

The present paper studied the reflection of thermo-microstretch waves under the generalized thermoelasticity theory which is employed to study the reflection of plane harmonic waves from a semi-infinite elastic solid under the effect of the electromagnetic field, initial stress, and gravity. The formulation is applied under the thermoelasticity theory with three-phase lag, and the reflection coefficient ratio variations with the angle of incidence under different conditions are obtained. Numerical results obtained from the present study are presented graphically and discussed. It is observed that the initial stress, gravitation, and electromagnetic field exert some influence in the thermo-microstretch medium due to reflection of P-waves.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hamdy M. Youssef ◽  
Alaa A. El-Bary ◽  
Eman A. N. Al-Lehaibi

This article constructs a mathematical model based on fractional-order deformations for a one-dimensional, thermoelastic, homogenous, and isotropic solid sphere. In the context of the hyperbolic two-temperature generalized thermoelasticity theory, the governing equations have been established. Thermally and without deformation, the sphere’s bounding surface is shocked. The singularities of the functions examined at the center of the world were decreased by using L’Hopital’s rule. Numerical results with different parameter fractional-order values, the double temperature function, radial distance, and time have been graphically illustrated. The two-temperature parameter, radial distance, and time have significant effects on all the studied functions, and the fractional-order parameter influences only mechanical functions. In the hyperbolic two-temperature theory as well as in one-temperature theory (the Lord-Shulman model), thermal and mechanical waves spread at low speeds in the thermoelastic organization.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hamdy M. Youssef ◽  
Alaa A. El-Bary ◽  
Eman A. N. Al-Lehaibi

AbstractThis work aims to study the influence of the rotation on a thermoelastic solid sphere in the context of the hyperbolic two-temperature generalized thermoelasticity theory based on the mechanical damage consideration. Therefore, a mathematical model of thermoelastic, homogenous, and isotropic solid sphere with a rotation based on the mechanical damage definition has been constructed. The governing equations have been written in the context of hyperbolic two-temperature generalized thermoelasticity theory. The bounding surface of the sphere is thermally shocked and without volumetric deformation. The singularities of the studied functions at the center of the sphere have been deleted using L’Hopital’s rule. The numerical results have been represented graphically with various mechanical damage values, two-temperature parameters, and rotation parameter values. The two-temperature parameter has significant effects on all the studied functions. Damage and rotation have a major impact on deformation, displacement, stress, and stress–strain energy, while their effects on conductive and dynamical temperature rise are minimal. The thermal and mechanical waves propagate with finite speeds on the thermoelastic body in the hyperbolic two-temperature theory and the one-temperature theory (Lord-Shulman model).


Sign in / Sign up

Export Citation Format

Share Document