Flow boiling in horizontal annuli outside horizontal smooth, herringbone and three-dimensional enhanced tubes

Author(s):  
Zhi-chuan Sun ◽  
Wei Li ◽  
Xiang Ma ◽  
Zahid Ayub ◽  
Yan He
Author(s):  
Alberto Cavallini ◽  
Davide Del Col ◽  
Luca Doretti ◽  
Luisa Rossetto ◽  
Giovanni Antonio Longo

Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 927 ◽  
Author(s):  
Zhi-Chuan Sun ◽  
Xiang Ma ◽  
Lian-Xiang Ma ◽  
Wei Li ◽  
David Kukulka

An experimental investigation was conducted to explore the flow boiling heat transfer characteristics of refrigerants R134A and R410A inside a smooth tube, as well as inside two newly developed surface-enhanced tubes. The internal surface structures of the two enhanced tubes are comprised of protrusions/dimples and petal-shaped bumps/cavities. The equivalent inner diameter of all tested tubes is 11.5 mm, and the tube length is 2 m. The experimental test conditions included saturation temperatures of 6 °C and 10 °C; mass velocities ranging from 70 to 200 kg/(m2s); and heat fluxes ranging from 10 to 35 kW/m2, with inlet and outlet vapor quality of 0.2 and 0.8. It was observed that the enhanced tubes exhibit excellent flow boiling heat transfer performance. This can be attributed to the complex surface patterns of dimples and petal arrays that increase the active heat transfer area; in addition, more nucleation sites are produced, and there is also an increased interfacial turbulence. Results showed that the boiling heat transfer coefficient of the enhanced surface tubes was 1.15–1.66 times that of the smooth tubing. Also, effects of the flow pattern and saturated temperature are discussed. Finally, a comparison of several existing flow boiling heat transfer models using the data from the current study is presented.


Author(s):  
Wei Li ◽  
Chuancai Zhang ◽  
Zhichuan Sun ◽  
Zhichun Liu ◽  
Lianxiang Ma ◽  
...  

Experimental investigation was performed to measure the evaporation heat transfer coefficients of R410A inside three three-dimensional enhanced tubes (1EHT-1, 1EHT-2 and 4LB). The inner and outer enhanced surface of the 4LB tube is composed by arrays of grooves and square pits, while 1EHT-1 tube and 1EHT-2 tube consist of longitudinal ripples and dimples of different depths. All these tubes have an inner diameter of 8.32 mm and an outer diameter of 9.52 mm. Experiment operational conditions are conducted as follows: the saturation temperature is 279 K, the vapor quality ranges from 0.2 to 0.8, and the mass flux varies from 160 kg/(m2·s) to 380 kg/(m2·s). With the mass flux increasing, the heat transfer coefficient increases accordingly. The heat transfer coefficient of 1EHT-2 is the highest of all three tubes, and that of 1EHT-1 is the lowest. The heat transfer coefficient of 4LB ranks between the 1EHT-1 and 1EHT-2 tube. The reason is that the heat transfer areas of the 1EHT-2 and 4LB tube are larger than that of 1EHT-1 and interfacial turbulence is enhanced in 1EHT-2.


Author(s):  
Tenglong Cong ◽  
Guanghui Su ◽  
Wenxi Tian ◽  
Suizheng Qiu

Structural integrity of steam generator should be maintained during operation, since it performs as the pressure and heat transfer boundary of primary side coolant. Localized thermal-hydraulic parameters of secondary side are essential for the analysis of tube wastage, fatigue and failure. In this paper, a three-dimensional thermohydraulics analysis code, named STAF, is developed based on FLUENT. With STAF code, three-dimensional thermohydraulics of secondary side of AP1000 steam generator are generated. This code is developed based on the porous media theory. In this code, the drift flux two-phase model coupled with a simplified flow boiling model is utilized to present two-phase flow among the U-tube bundle. Downcomer, tube bundle, support plates and primary separators in steam generator are considered in STAF code. The calculated results are compared with a general steam generator thermohydraulic analysis code ATHOS, which is developed by EPRI steam generator group. The comparison indicates that STAF code performs well in evaluating thermal-hydraulic parameters in steam generator. The results show that the flow field varies significantly at different position in AP1000 steam generator. Flow vapor quality at the inlet of primary separators varies significantly, which is a severe challenge to the capacity design of separators.


Author(s):  
Xiang Ma ◽  
Wei Li ◽  
Chuan-cai Zhang ◽  
Zhi-chuan Sun ◽  
David J. Kukulka ◽  
...  

Abstract An experimental investigation of condensation and evaporation heat transfer characteristics was performed in 15.88-mm-OD and 12.7-mm-OD smooth and three-dimensional enhanced tubes (1EHT, 3EHT) using R134A and R410A as the working fluid. The enhanced surface of the 1EHT tube is made up of dimples and a series of petal arrays; while the 3EHT tube is made up of rectangular cavities. Evaluations are performed at a saturation temperature of 45 °C, over the quality range of 0.8–0.2 for condensation; while for evaporation the saturation temperature was 6 °C and the quality ranged from 0.2 to 0.8. For condensation, the enhancement ratio (enhanced tube/smooth tube) of the heat transfer coefficients was 1.42–1.95 for the mass flux ranging from 80 to 200 kg/m2s; while for evaporation, the heat transfer enhancement ratio is 1.05–1.42 for values of mass flux that range from 50 to 180 kg/m2s. Furthermore, the 1EHT tube provides the best condensation and evaporation heat transfer performance, for both working fluids at the mass flux considered. This performance is due to the dimples in the enhanced surface that produce interface turbulence; additionally, the increased surface roughness causes additional disturbances and secondary flows near the boundary, producing higher heat fluxes. The main objective of this study was to evaluate the heat transfer enhancement of two enhanced tubes when using R134A and R410A as a function of mass flux, saturation temperature, and tube diameter. As a result of this study, it was determined that the heat transfer coefficient decreases with an increase in saturation temperature and tube diameter.


Sign in / Sign up

Export Citation Format

Share Document