hydraulic parameters
Recently Published Documents


TOTAL DOCUMENTS

660
(FIVE YEARS 187)

H-INDEX

35
(FIVE YEARS 4)

Author(s):  
Sonu Singh ◽  
Joseph Tripura

Abstract Groundwater conditions (GWCs) of an area depends on aquifer hydraulic parameters such as storativity () or storage coefficient (), transmissivity () and hydraulic conductivity (). It plays a key role concerning- groundwater flow modeling, well performance, solute and contaminants transports assessment and also for identification of areas for additional hydrologic testing. Specifically, the geologic formation of a regions control the porosity and permeability, however, in hilly terrain prospecting ground water potential is more challenging due to its limited extent and its occurrences that are usually confined to fractures and weathered rocks. The present study, aims at estimating the hydraulic parameters through pumping test analysis to assess aquifer system formation on hilly terrain from 16 bore wells. The aforesaid parameters were examined through a case study in some selective regions of Hamirpur district of Himachal Pradesh, India. The study area is controlled under two main geological horizons that is the post-tertiary and tertiary. The papers end with comparative results of hydraulic parameters and the aquifers system formation on different GWCs which may be helpful in the outlook of sustainable groundwater resource in the regions.


2022 ◽  
Vol 25 (1) ◽  
pp. 21-35
Author(s):  
Esam Mahmoud Mohammed ◽  
Salahaldeen Abid-Alziz AL-Qassab ◽  
Faris Akram Salih AL-Wazan

The objective of this research was to assess the use of unsaturated water flow in terms of soil water evaporation, which was determined by evaluating some soil hydraulic parameters in different soil textures. The results show that the predicted values of these parameters, which were obtained through inverse modeling with the HYDRUS-1D software and depend on the change of the volumetric water content, exhibited a significant agreement with the measured values from laboratory or field simulation data for soil water evaporation at 5. 10. 20. and 45 days of measurement. At the same time, inverse simulation was conducted on soil hydraulic parameters obtained from a 5-day laboratory soil evaporation period to predict field infiltration values and water retention curve, which showed a significant agreement with measured values for all soil textures.


Author(s):  
Alem Huayta Uribe ◽  
Jalber Brayan Macuri Vasquez ◽  
Alexander Claudio Miranda Yauri ◽  
Deyby Huamanchahua

Author(s):  
Reza Heydarzadeh ◽  
Massoud Tabesh ◽  
Miklas Scholz

Abstract This paper aims to develop a model for calculating the hydraulic and water quality parameters of wastewater within sewers. Information from the wastewater collection network and the transmission line in Birjand were used to verify the model performance. The parameters used for modelling quality changes include the yield constant for biomass (YH), the maximum specific growth rate (μH), the saturation constant for dissolved oxygen (KOG) and the saturation constant for readily biodegradable substrate within a biofilm (KSF), as well as the Gauckler–Manning–Strickler coefficient (n). They were selected from references and were verified at the calibration stage comparing measurements with the modelling values. Inputs of the created model are the average concentrations of dissolved oxygen and chemical oxygen demand of the incoming wastewater, the flow rate of wastewater at the exit point of the network, physical characteristics of the pipes and the height of drops within the sewer network. The amount of dissolved oxygen at different positions of the sewer network was calculated. The acceptable calculated sum of squares of errors and the correlation coefficient (R2) of the calibrated model for dissolved oxygen were 1.6872 and 0.77, respectively.


2021 ◽  
Vol 169 ◽  
pp. 106330
Author(s):  
Maryam Shahabi ◽  
Mehdi Ghomeshi ◽  
Javad Ahadiyan ◽  
Takavar Mohammadian ◽  
Christos Katopodis

2021 ◽  
Vol 910 (1) ◽  
pp. 012015
Author(s):  
Hussein Razzaq Nayyef

Abstract An experiment was carried out in Al-Rifai District - Dhi Qar Governorate, to study the effect of the distance between drippers and their discharge on friction losses, coefficient of variation, and emission consistency of the drip irrigation system. Spiral drippers with a design discharge of 4 and 8 L.hr"1. While the emitters were installed at distances of 20, 40, 60 (cm). The actual discharge of the droplets was measured and the friction losses, emission consistency coefficient, and discharge variance ratio were calculated. The results showed that the distance between the emitters 60 cm gave the lowest percentage of friction losses, which amounted to 0.165, 0.204 (m) for drippers with design drainage of 4, 8 L.hr-1. The best values of the emission consistency coefficient and the variance ratio in the emitters discharge were 95.44 and 28.41% when using the 8L.hr-1 and the distance between the emitters is 60 cm, respectively.


Sign in / Sign up

Export Citation Format

Share Document