3-D computational investigation and experimental validation of effect of shear-lift on two-phase flow and heat transfer characteristics of highly subcooled flow boiling in vertical upflow

Author(s):  
Jeongmin Lee ◽  
Lucas E. O'Neill ◽  
Issam Mudawar
2021 ◽  
Author(s):  
Jaime Rios ◽  
Mehdi Kabirnajafi ◽  
Takele Gameda ◽  
Raid Mohammed ◽  
Jiajun Xu

The present study experimentally and numerically investigates the flow and heat transfer characteristics of a novel nanostructured heat transfer fluid, namely, ethanol/polyalphaolefin nanoemulsion, inside a conventionally manufactured minichannel of circular cross section and a microchannel heat exchanger of rectangular cross section manufactured additively using the Direct Metal Laser Sintering (DMLS) process. The experiments were conducted for single-phase flow of pure polyalphaolefin (PAO) and ethanol/PAO nanoemulsion fluids with two ethanol concentrations of 4 wt% and 8 wt% as well as for two-phase flow boiling of nanoemulsion fluids to study the effect of ethanol nanodroplets on the convective flow and heat transfer characteristics. Furthermore, the effects of flow regime of the working fluids on the heat transfer performance for both the minichannel and microchannel heat exchangers were examined within the laminar and transitional flow regimes. It was found that the ethanol/PAO nanoemulsion fluids can improve convective heat transfer compared to that of the pure PAO base fluid under both single- and two-phase flow regimes. While the concentration of nanoemulsion fluids did not reflect a remarkable distinction in single-phase heat transfer performance within the laminar regime, a significant heat transfer enhancement was observed using the nanoemulsion fluids upon entering the transitional flow regime. The heat transfer enhancement at higher concentrations of nanoemulsion within the transitional regime is mainly attributed to the enhanced interaction and interfacial thermal transport between ethanol nanodroplets and PAO base fluid. For two-phase flow boiling, heat transfer coefficients of ethanol/PAO nanoemulsion fluids were further enhanced when the ethanol nanodroplets underwent phase change. A comparative study on the flow and heat transfer characteristics was also implemented between the traditionally fabricated minichannel and additively manufactured microchannel of similar dimensions using the same working fluid of pure PAO and the same operating conditions. The results revealed that although the DMLS fabricated microchannel posed a higher pressure loss, a substantial heat transfer enhancement was achieved as compared to the minichannel heat exchanger tested under the same conditions. The non-post processed surface of the DMLS manufactured microchannel is likely to be the main contributor to the augmented heat transfer performance. Further studies are required to fully appreciate the possible mechanisms behind this phenomenon as well as the convective heat transfer properties of nanoemulsion fluids.


Author(s):  
S. E. Tarasevich ◽  
A. B. Yakovlev

In paper the experimental results on a heat transfer in annular channels with continuous twisting at length at one- and two-phase flows are observed. For a flow twisting the wire was spirally coiled on the central body of the annular channel (diameter of a wire is equal to annular gap altitude). Results of experimental data of a heat transfer of authors and various researchers at a single phase flow in annular channels with a continuous twisting are analyzed. Sampling of diagnostic variables (equivalent diameter and velocity) is spent and generalizing associations for heat transfer calculation on the concave and convex surfaces in a single-phase phase are offered. Also the technique of definition of temperature of the subcooled flow boiling beginning on surfaces of annular channels with a twisting is offered. Features of boiling, origination of heat transfer crisis and results of visualization of a two-phase flow structure in annular channels with twisting are described.


Sign in / Sign up

Export Citation Format

Share Document