Thermal waves emitted by moving sources and the Doppler effect

Author(s):  
Roberto Li Voti ◽  
Mario Bertolotti
1951 ◽  
Vol 47 (1) ◽  
pp. 109-126 ◽  
Author(s):  
A. G. Walters

AbstractThe concept of the Green's vibrational function given in an earlier paper by the author is used to obtain a general expression for the disturbance from a point source. The potential due to transient sources of sound moving with subsonic and supersonic velocities is derived from this. It is found that the Doppler effect for a supersonic source differs from that for a subsonic source. In the former case it is found that two frequencies are heard simultaneously from a source emitting a note of one frequency.The theory is applied to determine some solutions of the two dimensional equation of supersonic, irrotational compressible flow, corresponding to the flow around an aerofoil taking into consideration the entropy changes at the shock wave.


1998 ◽  
Vol 13 (01) ◽  
pp. 1-6 ◽  
Author(s):  
BRUNO BERTOTTI

The increase in the accuracy of Doppler measurements in space requires a rigorous definition of the observed quantity when the propagation occurs in a moving, and possibly dispersive medium, like the solar wind. This is usually done in two divergent ways: in the phase viewpoint it is the time derivative of the correction to the optical path; in the ray viewpoint the signal is obtained form the deflection produced in the ray. They can be reconciled by using the time derivative of the optical path in the Lagrangian sense, i.e. differentiating from ray to ray. To rigorously derive this result an understanding, through relativistic Hamiltonian theory, of the delicate interplay between rays and phase is required; a general perturbation theorem which generalizes the concept of the Doppler effect as a Lagrangian derivative is proved. Relativistic retardation corrections O(v) are obtained, well within the expected sensitivity of Doppler experiments near solar conjunction.


1976 ◽  
Vol 11 (1) ◽  
pp. 5-6
Author(s):  
Charles W Fox ◽  
E M Wray

2014 ◽  
pp. 86-126
Author(s):  
John B. Hearnshaw

Sign in / Sign up

Export Citation Format

Share Document