A nongray-wall emissivity model for the full-spectrum correlated k-distribution method based on uniform media assumption

Author(s):  
Guanghai Liu ◽  
Yuying Liu ◽  
Fengshan Liu ◽  
Jean-Louis Consalvi ◽  
Jiale Xu
2014 ◽  
Vol 1008-1009 ◽  
pp. 839-845
Author(s):  
Yue Zhou ◽  
Qiang Wang ◽  
Hai Yang Hu

The k-distribution method applied in narrow band and wide band is extended to the full spectrum based on spectroscopic datebase HITEMP, educing the full-spectrum k-distribution model. Absorption coefficents in this model are reordered into a smooth,monotonically increasing function such that the intensity calculations are performed only once for each absorption coefficent value and the resulting computations are immensely more efficent.Accuracy of this model is examined for cases ranging from homogeneous one-dimensional carbon dioxide to inhomogeneous ones with simultaneous variations in temperature. Comparision with line-by-line calculations (LBL) and narrow-band k-distribution (NBK) method as well as wide-band k-distribution (WBK) method shows that the full-spectrum k-distribution model is exact for homogeneous media, although the errors are greater than the other two models. After dividing the absorption coefficients into several groups according to their temperature dependence, the full-spectrum k-distribution model achieves line-by-line accuracy for gases inhomogeneous in temperature, accompanied by lower computational expense as compared to NBK model or WBK model. It is worth noting that a new grouping scheme is provided in this paper.


2008 ◽  
Author(s):  
Xiaojing Sun ◽  
Philip J. Smith

Accurate prediction of radiative heat transfer plays a key role in many high temperature applications, such as combustion devices and fires. Among various simulation methods, the Monte-Carlo Ray-Tracing (MCRT) has the advantage of solving the radiative transfer equation (RTE) for real gas mixtures with almost no approximations; however, it has disadvantage of requiring a large computational effort. The MCRT method can be carried out with either the Forward MCRT or the Reverse MCRT, depending on the direction of ray tracing. The RMCRT method has advantages over the FMCRT method in that it uses less memory, and in a domain decomposition parallelization strategy, it can explicitly obtain solutions for the domain of interest without the need for the solution on the entire domain.


2005 ◽  
Author(s):  
Liangyu Wang ◽  
Michael F. Modest

The multi-scale full-spectrum k-distribution (MSFSK) method has become a promising method for radiative heat transfer in inhomogeneous media. In this paper an original distribution scheme is proposed to extend the MSFSK’s ability in dealing with boundary wall emission. This scheme pursues the overlap concept of the MSFSK method and requires no changes in the original MSFSK formulation. A boundary emission overlap coefficient is introduced and two approaches of evaluating the coefficient are outlined. The distribution scheme is evaluated and the two approaches are compared by conducting sample calculations for radiative heat transfer in strongly inhomogeneous media using both the MSFSK method and the line-by-line method.


Author(s):  
Yuying Liu ◽  
Jinyu Zhu ◽  
Guanghai Liu ◽  
Jean-louis Consalvi ◽  
Fengshan Liu

2009 ◽  
Vol 132 (2) ◽  
Author(s):  
Gopalendu Pal ◽  
Michael F. Modest

The full-spectrum k-distribution (FSK) approach has become a promising method for radiative heat transfer calculations in strongly nongray participating media, due to its ability to achieve high accuracy at a tiny fraction of the line-by-line (LBL) computational cost. However, inhomogeneities in temperature, total pressure, and component mole fractions severely challenge the accuracy of the FSK approach. The objective of this paper is to develop a narrow band-based hybrid FSK model that is accurate for radiation calculations in combustion systems containing both molecular gases and nongray particles such as soot with strong temperature and mole fraction inhomogeneities. This method combines the advantages of the multigroup FSK method for temperature inhomogeneities in a single species, and the modified multiscale FSK method for concentration inhomogeneities in gas-soot mixtures. In this new method, each species is considered as one scale; the absorption coefficients within each narrow band of every gas scale are divided into M exclusive spectral groups, depending on their temperature dependence. Accurate and compact narrow band multigroup databases are constructed for combustion gases such as CO2 and H2O. Sample calculations are performed for a 1D medium and also for a 2D axisymmetric combustion flame. The narrow band-based hybrid method is observed to accurately predict heat transfer from extremely inhomogeneous gas-soot mixtures with/without wall emission, yielding close-to-LBL accuracy.


Sign in / Sign up

Export Citation Format

Share Document