Electrical contact resistance between stainless steel bipolar plate and carbon felt in PEFC: A comprehensive study

2009 ◽  
Vol 34 (7) ◽  
pp. 3125-3133 ◽  
Author(s):  
Johan André ◽  
Laurent Antoni ◽  
Jean-Pierre Petit ◽  
Eric De Vito ◽  
Alexandre Montani
2019 ◽  
Vol 25 (1) ◽  
pp. 1755-1763
Author(s):  
Joon-Hwan Choi ◽  
Jong-Jin Choi ◽  
Jungho Ryu ◽  
Byung-Dong Hahn ◽  
Woon-Ha Yoon ◽  
...  

2010 ◽  
Vol 447-448 ◽  
pp. 775-779 ◽  
Author(s):  
Kurniawan Miftah ◽  
Wan Ramli Wan Daud ◽  
Edy Herianto Majlan

Stress applying in the stack of Proton Exchange Membrane Fuel Cell (PEMFC) effects the performance of PEMFC. High pressure in the Membrane Electrode Assembly (MEA) can reduce electrical contact resistance between bipolar plate and MEA. Nevertheless, too high pressure in the PEMFC can destroy MEA. Performance of PEMFC can be optimized by make proportional stress in the assembly of PEMFC. Finite element analysis (FEA) is one of method that can be used for analysis of stress in the PEMFC stack. However, setting of parameter in the analysis using FEA still became one of problem if realistic result must be desired. This paper reports setting of parameters in the stress analysis of PEMFC assembly using FEA method and study relationship of stress analysis with electrical contact resistance.


Author(s):  
Sunghun Yoo ◽  
Yong Hoon Jang

The contact resistance between gas diffusion layer and bipolar plate in a fuel cell stack is calculated through multiscale contact analysis, which deals with rough surfaces dependent on scales. The rough surface according to scale shows that the surface parameters vary with scale, leading to inaccurate contact resistance. A numerical model is established to reflect the contact interaction of carbon graphite fiber in the contact interface. Two separate analyses are performed, static analysis to determine the contact area and electrical conduction analysis to calculate the electrical contact resistance. Results show that the contact area decreases and the corresponding contact resistance increases as the scale decreases. To accurately estimate the contact resistance, an asymptotic contact resistance according to scale variation is predicted using error analysis. The computed contact resistance is validated via comparison with previously reported values.


2016 ◽  
Vol 108 (18) ◽  
pp. 181903 ◽  
Author(s):  
Gaurav Singh ◽  
R. L. Narayan ◽  
A. M. Asiri ◽  
U. Ramamurty

Sign in / Sign up

Export Citation Format

Share Document