scholarly journals Impact of cyclic mechanical compression on the electrical contact resistance between the gas diffusion layer and the bipolar plate of a polymer electrolyte membrane fuel cell

2020 ◽  
Vol 153 ◽  
pp. 349-361 ◽  
Author(s):  
Khadidja Bouziane ◽  
El Mahdi Khetabi ◽  
Rémy Lachat ◽  
Nada Zamel ◽  
Yann Meyer ◽  
...  
Author(s):  
Pavan Kumar Konnepati ◽  
Pradip Majumdar

Fuel cells convert chemical energy of fuels into electricity directly. Their higher efficiency and low emissions made them prime candidates for next generation power requirements. The Polymer Electrolyte Membrane (PEM) fuel cell has gained attention of both transportation and stationary power generation industries. In this study a three-dimensional computational model for the simulation of Polymer Electrolyte Membrane (PEM) fuel cell unit cell is developed to understand the complex internal mechanisms, and evaluate the effects of bipolar plate designs on the cell performance. The model includes combined heat and mass transfer processes due to convection and diffusion in the gas flow channels of bi-polar plates as well in the gas diffusion layers of the electrodes, and associated electrochemical reactions in a tri-layer PEM fuel cell. Simulation is carried out with straight parallel channels for operating current density in the range from 0.5–1.5 A/cm2 showed significant insight details of PEM fuel cell in terms of distribution of reactant gases, and heat and water transport across the cell. A significantly high variation in gas concentration across the electrode–membrane interfaces and along the channel length is noticed, requiring higher stoichiometric ratios to increase the limiting current density.


2014 ◽  
Vol 699 ◽  
pp. 689-694 ◽  
Author(s):  
Mohd Zulkefli Selamat ◽  
Mohd Shakir Ahmad ◽  
Mohd Ahadlin Mohd Daud ◽  
Musthafa Mohd Tahir ◽  
Safaruddin Gazali Herawan

Polymer Electrolyte Membrane Fuel Cell (PEMFC) is an alternative energy system that has been verified with great potential for high power density, durability and cost effectiveness. Since the bipolar plate is the key component in PEMFC, the component must operate with multifunction and have a balance of properties, essentially well in both electrical and mechanical properties. At present, many different materials have been tested to be applied for bipolar plate in order to fulfill the balance in each property. In this work, the different material is tested and observed. Polypropylene (PP) is used as a binder material, Graphite (Gr) is used as a main filler and Carbon Black (CB), Iron (Fe) and Nickel (Ni) as the second filler. This composite is produced through compression molding and the effect of different filler material loading on the properties such as electrical conductivity, flexural strength, bulk density and shore hardness are observed. The result showed the increasing of electrical conductivity as the increased the CB and Fe loading. But for Ni, the result showed the decreasing of electrical conductivity as the loading of Ni has been increased. The targeted value also achieved for some certain degree of filler loading.


2010 ◽  
Vol 113-116 ◽  
pp. 2255-2261
Author(s):  
Dong Ming Zhang ◽  
Lu Guo ◽  
Liang Tao Duan ◽  
Zai Yi Wang

In the present study, we try to prepare hydrophobic film coated on stainless steel as the bipolar plate for polymer electrolyte membrane fuel cell (PEMFC). Magnetron sputtering (MS) was adoped to prepare the Cr3Ni2/Cr2N multi-layer coated on stainless steel. The corrosion resistance and electrical conductance of the coated substrate were tested. The water contact angles were measured. The film exhibits improved corrosion resistance and electrical conductance. The corrosion current is 0.58µA.cm-2 and the contact resistance at 240N.cm-2 is 8.5mΩ.cm2. Meanwhile, it is a kind of hydrophobic film with water contact angle of 107o. The performance shows strong dependance on microstructural characteristics. The nano-protrudes on the SS304/Cr3Ni2/Cr2N surface result in the film with hydrophobic property, just like the effect of lotus surface.


Sign in / Sign up

Export Citation Format

Share Document