Thermal management oriented steady state analysis and optimization of a kW scale solid oxide fuel cell stand-alone system for maximum system efficiency

2013 ◽  
Vol 38 (28) ◽  
pp. 12404-12417 ◽  
Author(s):  
Hongliang Cao ◽  
Xi Li ◽  
Zhonghua Deng ◽  
Jian Li ◽  
Yi Qin
2021 ◽  
Vol 48 ◽  
pp. 101564
Author(s):  
Keqing Zheng ◽  
Ya Sun ◽  
Shuanglin Shen ◽  
Li Li ◽  
Shaorong Wang

Energies ◽  
2015 ◽  
Vol 8 (11) ◽  
pp. 13231-13254 ◽  
Author(s):  
Paola Costamagna ◽  
Simone Grosso ◽  
Rowland Travis ◽  
Loredana Magistri

2020 ◽  
Author(s):  
Sadegh Safari ◽  
Hassan Ali Ozgoli

In this paper, an electrochemical model was developed to investigate the performance analysis of a Solid Oxide Fuel Cell (SOFC). The curves of voltage, power, efficiency, and the generated heat of cell have been analyzed to accomplish a set of optimal operating conditions. Further, a sensitivity analysis of major parameters that have a remarkable impact on the economy of the SOFC and its residential applications has been conducted. The results illustrate that the current density and cell performance temperature have vital effects on the system efficiency, output power and heat generation of cell of the SOFC. The best system efficiency is approached up to 53.34 % while implementing combined heat and power generation might be further improved up to 86 %. The economic evaluation results indicate that parameters such as overall efficiency, natural gas price and additional produced electricity that has prone to be sold to the national power grid, have a significant impact on the SOFC economy. The results indicate the strong reduction in the purchasing cost of the SOFC, i.e. not more than $2500, and improving the electrical efficiency of SOFC, i.e. not less than 42 %, can be the breakeven points of investment on such systems in residential applications. Also, it is found that the target of this SOFC cogeneration system for residential applications in Iran is relying on considerable technological enhancement of the SOFC, as well as life cycle improvement; improvement in governmental policies; and profound development in infrastructures to mitigate legal constraints.


Author(s):  
Zheng Dang ◽  
Hiroshi Iwai ◽  
Kenjiro Suzuki

In this study, numerical modeling of air and fuel flows, electrochemical processes, heat and mass transfer and electric potential fields and related electric current has been attempted for a disk shape planar solid oxide fuel cell (SOFC). This is the extension of the previous similar works on a tubular type solid oxide fuel cell, Nishino et al. (2003) and Li and Suzuki (2004). Numerical model to be established can be used as an effective means to simulate the phenomena in the cell. Such information can be used in the optimum design and thermal management of SOFC.


Sign in / Sign up

Export Citation Format

Share Document