Cu/MnOx–CeO2 and Ni/MnOx–CeO2 catalysts for the water–gas shift reaction: Metal–support interaction

2014 ◽  
Vol 39 (16) ◽  
pp. 8675-8681 ◽  
Author(s):  
Eduardo Poggio-Fraccari ◽  
Jorge Sambeth ◽  
Graciela Baronetti ◽  
Fernando Mariño
ACS Catalysis ◽  
2017 ◽  
Vol 7 (11) ◽  
pp. 7600-7609 ◽  
Author(s):  
Ming Xu ◽  
Shan He ◽  
Hao Chen ◽  
Guoqing Cui ◽  
Lirong Zheng ◽  
...  

2021 ◽  
Author(s):  
Jian Zhang ◽  
Pan Yin ◽  
Ming Xu ◽  
Guoqing Cui ◽  
Jun Yu ◽  
...  

Abstract In the heterogeneous field, modulation over strong metal-support interactions (SMSI) plays a crucial role in boosting catalytic performance toward interface-sensitive reactions (e.g., water gas shift reaction, WGSR). Herein, a CuZnTi ternary catalyst was prepared via in situ structural topological transformation from CuZnTi-layered double hydroxides precursor (CuZnTi-LDHs). The resulting catalyst Cu/ZnTi-MMO(H350) exhibits an extraordinarily high catalytic activity toward low temperature-WGSR with a reaction rate of 19.7 μmolCO gcat-1 s-1 at 250 °C, among the highest level in Cu-based catalysts. Advanced electron microscope and in situ spectroscopy characterizations verify that Cu nanoparticles (particle size: 7~10 nm) are modified by ZnTi-mixed metal oxides with abundant Cuδ+−Ov−Ti3+ (0<δ<1) interfacial sites. Incorporation of Ti element facilitates the reduction of ZnO to stabilize Cuδ+ species at the interface, which enhances the chemisorption of CO molecule. Simultaneously, neighboring Ov−Ti3+ species significantly promotes the dissociation of H2O molecule. The structure-activity correlation studies based on quasi-in situ XPS, in situ DRIFTS, in situ and operando EXAFS reveal that the interfacial sites (Cuδ+−Ov−Ti3+) serve as the intrinsic active sites of WGS reaction. A combination of in situ characterization techniques and DFT calculations further substantiate that associative mechanism is the predominant reactive path below 200 °C whilst redox mechanism is overwhelming above 250 °C in the presence of Cu/ZnTi-MMO catalyst. This work demonstrates a facile modulation on metal-support interfacial structure via LDHs approach, which paves a way for rational design and preparation of heterogeneous catalysts.


2020 ◽  
Vol 2 (1) ◽  
pp. 23
Author(s):  
Marc Ziemba ◽  
Danny Stark ◽  
Christian Hess

Ceria loaded with noble metals (Cu, Au) is a highly active material for the low-temperature water-gas shift reaction (LT-WGSR), but nevertheless details of the metal support interaction as well as the role of the ceria surface termination and the metal loading are still unclear. Using operando Raman and UV/Vis spectroscopy combined with theoretical density functional theory (DFT) calculations, we aim at a molecular-level understanding of LT-WGSR catalysts. In particular, by using this combined approach, we are able to draw conclusions about the reducibility state of the ceria support during reaction conditions. Our results show that the defect formation energy of the support does not play a major role for the WGSR, but rather other reaction steps such as the dissociation of water or the desorption of CO2.


Sign in / Sign up

Export Citation Format

Share Document