Fuzzy observer-based fault tolerant control against sensor faults for proton exchange membrane fuel cells

2020 ◽  
Vol 45 (19) ◽  
pp. 11220-11232
Author(s):  
Elkhatib Kamal ◽  
Abdel Aitouche
2017 ◽  
Vol 359 ◽  
pp. 119-133 ◽  
Author(s):  
Etienne Dijoux ◽  
Nadia Yousfi Steiner ◽  
Michel Benne ◽  
Marie-Cécile Péra ◽  
Brigitte Grondin Pérez

Electrochem ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 604-630
Author(s):  
Etienne Dijoux ◽  
Nadia Yousfi Steiner ◽  
Michel Benne ◽  
Marie-Cécile Péra ◽  
Brigitte Grondin-Perez

Proton exchange membrane fuel cells are relevant systems for power generation. However, they suffer from a lack of reliability, mainly due to their structural complexity. Indeed, their operation involves electrochemical, thermal, and electrical phenomena that imply a strong coupling, making it harder to maintain nominal operation. This complexity causes several issues for the design of appropriate control, diagnosis, or fault-tolerant control strategies. It is therefore mandatory to understand the fuel cell structure for a relevant design of these kinds of strategies. This paper proposes a fuel cell fault structural analysis approach that leads to the proposition of a structural graph. This graph will then be used to highlight the interactions between the control variables and the functionalities of a fuel cell, and therefore to emphasize how changing a parameter to mitigate a fault can influence the fuel cell state and eventually cause another fault. The final aim of this work is to allow an easier implementation of an efficient and fault-tolerant control strategy on the basis of the proposed graphical representation.


2019 ◽  
Author(s):  
Valentina Guccini ◽  
Annika Carlson ◽  
Shun Yu ◽  
Göran Lindbergh ◽  
Rakel Wreland Lindström ◽  
...  

The performance of thin carboxylated cellulose nanofiber-based (CNF) membranes as proton exchange membranes in fuel cells has been measured in-situ as a function of CNF surface charge density (600 and 1550 µmol g<sup>-1</sup>), counterion (H<sup>+</sup>or Na<sup>+</sup>), membrane thickness and fuel cell relative humidity (RH 55 to 95 %). The structural evolution of the membranes as a function of RH as measured by Small Angle X-ray scattering shows that water channels are formed only above 75 % RH. The amount of absorbed water was shown to depend on the membrane surface charge and counter ions (Na<sup>+</sup>or H<sup>+</sup>). The high affinity of CNF for water and the high aspect ratio of the nanofibers, together with a well-defined and homogenous membrane structure, ensures a proton conductivity exceeding 1 mS cm<sup>-1</sup>at 30 °C between 65 and 95 % RH. This is two orders of magnitude larger than previously reported values for cellulose materials and only one order of magnitude lower than Nafion 212. Moreover, the CNF membranes are characterized by a lower hydrogen crossover than Nafion, despite being ≈ 30 % thinner. Thanks to their environmental compatibility and promising fuel cell performance the CNF membranes should be considered for new generation proton exchange membrane fuel cells.<br>


2017 ◽  
Vol 10 (1) ◽  
pp. 96-105 ◽  
Author(s):  
Mohammed Jourdani ◽  
Hamid Mounir ◽  
Abdellatif El Marjani

Background: During last few years, the proton exchange membrane fuel cells (PEMFCs) underwent a huge development. Method: The different contributions to the design, the material of all components and the efficiencies are analyzed. Result: Many technical advances are introduced to increase the PEMFC fuel cell efficiency and lifetime for transportation, stationary and portable utilization. Conclusion: By the last years, the total cost of this system is decreasing. However, the remaining challenges that need to be overcome mean that it will be several years before full commercialization can take place.This paper gives an overview of the recent advancements in the development of Proton Exchange Membrane Fuel cells and remaining challenges of PEMFC.


Sign in / Sign up

Export Citation Format

Share Document