An energy matching method for battery electric vehicle and hydrogen fuel cell vehicle based on source energy consumption rate

2019 ◽  
Vol 44 (56) ◽  
pp. 29733-29742 ◽  
Author(s):  
Huiyuan Xiong ◽  
Huan Liu ◽  
Ronghui Zhang ◽  
Limin Yu ◽  
Zhijian Zong ◽  
...  
Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 529
Author(s):  
Kyoungho Ahn ◽  
Hesham A. Rakha

This paper presents a simple hydrogen fuel cell vehicle (HFCV) energy consumption model. Simple fuel/energy consumption models have been developed and employed to estimate the energy and environmental impacts of various transportation projects for internal combustion engine vehicles (ICEVs), battery electric vehicles (BEVs), and hybrid electric vehicles (HEVs). However, there are few published results on HFCV energy models that can be simply implemented in transportation applications. The proposed HFCV energy model computes instantaneous energy consumption utilizing instantaneous vehicle speed, acceleration, and roadway grade as input variables. The mode accurately estimates energy consumption, generating errors of 0.86% and 2.17% relative to laboratory data for the fuel cell estimation and the total energy estimation, respectively. Furthermore, this work validated the proposed model against independent data and found that the new model accurately estimated the energy consumption, producing an error of 1.9% and 1.0% relative to empirical data for the fuel cell and the total energy estimation, respectively. The results demonstrate that transportation engineers, policy makers, automakers, and environmental engineers can use the proposed model to evaluate the energy consumption effects of transportation projects and connected and automated vehicle (CAV) transportation applications within microscopic traffic simulation models.


2020 ◽  
Vol 89 ◽  
pp. 102897 ◽  
Author(s):  
Scott Kelley ◽  
Aimee Krafft ◽  
Michael Kuby ◽  
Oscar Lopez ◽  
Rhian Stotts ◽  
...  

2013 ◽  
Vol 6 (2) ◽  
pp. 464-475
Author(s):  
O. Grimes ◽  
C. Bastien ◽  
J. Christensen ◽  
N. Rawlins ◽  
W. Hammond ◽  
...  

Author(s):  
Keilin Kuo ◽  
Chungchen Tsao

In this study, we adopt a dual power system for extension (DPES) operation by combining the existing power system of an electric vehicle with a hydrogen fuel cell. This was to enhance the durability of the electric vehicle and reduce the inconvenience of battery charging. The lithium battery acts as the primary power source and has real-time monitoring of its state of charge (SOC), while the hydrogen fuel cells act as the auxiliary power supply. The auxiliary power can be used either directly or for charging the lithium battery while the vehicle is in its idle state. The dual power system is coupled with a dual-mode motor controller and energy management system. This study aims to apply the dual power system on the electric vehicle using hydrogen fuel cells. We designed a simulation platform for real driving conditions using Labview to send and receive control commands. In this study, we simulated the road cycles of the Economic Commission for Europe (ECE-40), Japanese legislative cycle (JP10) and the World-wide Motorcycle Emissions Test Cycle (WMTC), using Proportional-integral Control (PI) for automatic tracking and employing engineering error analysis to determine the most suitable PI parameter values for the simulated system. The results showed that using a fixed 100 W fuel cell could enhance the operation time up to 21 %, 21 %, and 14 % for the road cycles of the ECE-40, JP10, and WMTC, respectively. Due to the required features of an actual vehicle, we also designed an energy limiting system to manage the driver-controlled electronic throttle by controlling the instantaneous and maximum power output of the motor in order to achieve savings in energy consumption, increase its operation time, protect the system, and enhance its durability.


2017 ◽  
Vol 42 (16) ◽  
pp. 11541-11552 ◽  
Author(s):  
Fu-qiang Chen ◽  
Ming Zhang ◽  
Jin-yuan Qian ◽  
Li-long Chen ◽  
Zhi-jiang Jin

Sign in / Sign up

Export Citation Format

Share Document