Hydrogen circulation system model predictive control for polymer electrolyte membrane fuel cell-based electric vehicle application

2020 ◽  
Vol 45 (39) ◽  
pp. 20382-20390 ◽  
Author(s):  
Hongwen He ◽  
Shengwei Quan ◽  
Ya-Xiong Wang
Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5353
Author(s):  
Martin Vrlić ◽  
Daniel Ritzberger ◽  
Stefan Jakubek

In this paper, a polymer electrolyte membrane fuel cell (PEMFC) stack control study is presented. The goal is to track the transient power demand of a real fuel cell (FC) vehicle while ensuring safe and efficient operation. Due to the dynamically changing power demand, fast transients occur in the internal states of the fuel cell (e.g., pressure, humidity, reactant mass) leading to degradation effects (e.g., high/low membrane overpressure, reactants starvation) which are avoided by imposing safety constraints. Efficiency is considered in terms of internal voltage losses minimization as well as minimization of the power of the compressor used to pressurize the cathode. For solving the optimization problem of power demand tracking, adhering to safety constraints, and maximizing efficiency, model predictive control (MPC) has been chosen. Due to the nonlinearity of the FC system, a successive linearization based MPC (SLMPC) is used to control the FC throughout its operating region. Simulation results show that the power demand can be fulfilled while at the same time ensuring safe operation in terms of adhering to constraints and that the minimization of internal voltage losses and compressor power lead to an approximate 9.5% less hydrogen consumption than in the actual reference vehicle.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4048
Author(s):  
Huu Linh Nguyen ◽  
Jeasu Han ◽  
Xuan Linh Nguyen ◽  
Sangseok Yu ◽  
Young-Mo Goo ◽  
...  

Durability is the most pressing issue preventing the efficient commercialization of polymer electrolyte membrane fuel cell (PEMFC) stationary and transportation applications. A big barrier to overcoming the durability limitations is gaining a better understanding of failure modes for user profiles. In addition, durability test protocols for determining the lifetime of PEMFCs are important factors in the development of the technology. These methods are designed to gather enough data about the cell/stack to understand its efficiency and durability without causing it to fail. They also provide some indication of the cell/stack’s age in terms of changes in performance over time. Based on a study of the literature, the fundamental factors influencing PEMFC long-term durability and the durability test protocols for both PEMFC stationary and transportation applications were discussed and outlined in depth in this review. This brief analysis should provide engineers and researchers with a fast overview as well as a useful toolbox for investigating PEMFC durability issues.


Sign in / Sign up

Export Citation Format

Share Document